141 research outputs found

    Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays

    Get PDF
    Bubble formation from plasmonic heating of nanostructures is of great interest in many applications. In this work, we study experimentally the intrinsic effects of the number of three-dimensional plasmonic nanostructures on the dynamics of microbubbles, largely decoupled from the effects of dissolved air. The formation and dissolution of microbubbles is observed on exciting groups of 1, 4, and 9 nanopillars. Our results show that the power threshold for the bubble formation depends on the number density of the nanopillars in highly-ordered arrays. In the degassed water, both the growth rate and the maximal radius of the plasmonic microbubbles increase with an increase of the illuminated pillar number, due to the heat balance between the heat loss across the bubble and the collective heating generated from the nanopillars. Interestingly, our results show that the bubble dissolution is affected by the spatial arrangement of the underlying nanopillars, due to the pinning effect on the bubble boundary. The bubbles on nanopillar arrays dissolve in a jumping mode with step-wise features on the dissolution curves, prior to a smooth dissolution phase for the bubble pinned by a single pillar. The insight from this work may facilitate the design of nanostructures for efficient energy conversion

    High-dimensional quantile mediation analysis with application to a birth cohort study of mother-newborn pairs

    Get PDF
    MOTIVATION: There has been substantial recent interest in developing methodology for high-dimensional mediation analysis. Yet, the majority of mediation statistical methods lean heavily on mean regression, which limits their ability to fully capture the complex mediating effects across the outcome distribution. To bridge this gap, we propose a novel approach for selecting and testing mediators throughout the full range of the outcome distribution spectrum. RESULTS: The proposed high-dimensional quantile mediation model provides a comprehensive insight into how potential mediators impact outcomes via their mediation pathways. This method\u27s efficacy is demonstrated through extensive simulations. The study presents a real-world data application examining the mediating effects of DNA methylation on the relationship between maternal smoking and offspring birthweight. AVAILABILITY AND IMPLEMENTATION: Our method offers a publicly available and user-friendly function qHIMA(), which can be accessed through the R package HIMA at https://CRAN.R-project.org/package=HIMA

    Ginkgolide K potentiates the protective effect of ketamine against intestinal ischemia/reperfusion injury by modulating NF-ΞΊB/ERK/JNK signaling pathway

    Get PDF
    Purpose: To investigate the effect of ginkgolide K and ketamine treatments, alone and in combination, on intestinal  ischemia/reperfusion injury (I/R)-induced injury in rats, as well as the mechanism involved. Methods: Rats were treated with ginkgolide K (GK, 15 mg/kg i.v) and ketamine (KTM, 100 mg/kg i.p.), either alone or in combination 30 min before the induction of intestinal I/R. The effects of GK and KTM were determined by assessing the levels of cytokines in serum, and parameters of oxidative stress and ROS production in the intestinal tissues of I/R rats. Moreover, intestinal mRNA expressions of JNK, ERK, p38 and NF-kB were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results: GK and KTM treatments, alone and in combination, reduced cytokine levels in serum and oxidative stress parameters in intestinal tissues, when compared to I/R group of rats. Treatments with GK and KTM, alone and in combination, mitigated the altered mRNA expressions of JNK, ERK, p38 and NF-kB in intestinal tissues of I/R-injured rats. Conclusion: These results reveal that GK potentiates the protective effect of KTM100 on I/R-induced intestinal injury in rats by regulating the NF-kB/ERK/JNK signaling pathway. Therefore, GK and KTM may find use in the management of I/R Keywords: Ginkgolide K, Ketamine, Intestinal injury, Ischemia/Reperfusion, Inflammatio

    Abound Hepatic Mitosis: Unusual Morphology in the Intrahepatic Cholelithiasis Patient

    Get PDF
    To explore the clinicopathological features of abound mitosis of the hepatocytes in intrahepatic cholelithiasis. The clinicopathological data of one case diagnosed as intrahepatic cholelithiasis was collected from Yantai Yuhuangding Hospital and the clinicopathological characters were discussed. A 68-year-old man suffered from the pain in the right upper quadrant and radiology showed multiple stones in the gallbladder and left liver. The images suggested intrahepatic cholelithiasis. The patient received gallbladder and partial hepatectomy. A large number of mitosis was observed and twelve nuclear fissions were found under high magnification, even in some area pathological nuclear fission could be observed in morphology. On the basis of detection in laboratory, the diagnosis of intrahepatic cholelithiasis was made. The patient did not receive any therapy after surgery. The patient was in a good condition after 18 months follow-up. Increased number of hepatic mitosis might be due to the stimulation from stones, hepatic biliary or secondary inflammatory. High index of proliferation should be prevented from the potential misdiagnosis of hepatic tumor

    Toll-Like Receptor 9 Is Required for Opioid-Induced Microglia Apoptosis

    Get PDF
    Opioids have been widely applied in clinics as one of the most potent pain relievers for centuries, but their abuse has deleterious physiological effects beyond addiction. However, the underlying mechanism by which microglia in response to opioids remains largely unknown. Here we show that morphine induces the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, TLR9 deficiency significantly inhibited morphine-induced apoptosis in microglia. Similar results were obtained when endogenous TLR9 expression was suppressed by the TLR9 inhibitor CpGODN. Inhibition of p38 MAPK by its specific inhibitor SB203580 attenuated morphine-induced microglia apoptosis in wild type microglia. Morphine caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type microglia, but not in TLR9 deficient microglia. In addition, morphine treatment failed to induce an increased levels of phosphorylated p38 MAPK and MAP kinase kinase 3/6 (MKK3/6), the upstream MAPK kinase of p38 MAPK, in either TLR9 deficient or ΞΌ-opioid receptor (ΞΌOR) deficient primary microglia, suggesting an involvement of MAPK and ΞΌOR in morphine-mediated TLR9 signaling. Moreover, morphine-induced TLR9 expression and microglia apoptosis appears to require ΞΌOR. Collectively, these results reveal that opioids prime microglia to undergo apoptosis through TLR9 and ΞΌOR as well. Taken together, our data suggest that inhibition of TLR9 and/or blockage of ΞΌOR is capable of preventing opioid-induced brain damage

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury

    Ultrasound-driven BaTiO3 nanorobots patching immunologic barrier to cure chronic rheumatoid arthritis

    Get PDF
    The disruption and reconstruction of the TREM2+ tissue resident macrophage (TRM) barrier on the surface of synovial lining play a key role in the activation and "remission" of rheumatoid arthritis (RA), which engender the prediction of this immunologic barrier as a potential driver for the achievement of "cure" in RA. However, strategies to promote the reconstruction of this barrier have not been reported, and the effect of patching this barrier remains unidentified. On the other hand, appropriate piezoelectric stimulation can reprogram macrophages, which has never been exerted on this barrier TRM yet. Herein, we design piezoelectric tetragonal BaTiO3 (BTO) ultrasound-driven nanorobots (USNRs) by the solvothermal synthesis method, which demonstrates satisfactory electro-mechanical conversion effects, paving the way to generate controllable electrical stimulation under ultrasound to reprogram the barrier TRM by minimally invasive injection into joint cavity. It is demonstrated that the immunologic barrier could be patched by this USNR effectively, thereby eliminating the hyperplasia of vessels and nerves (HVN) and synovitis. Additionally, TREM2 deficiency serum-transfected arthritis (STA) mice models are applied and proved the indispensable role of TREM2 in RA curing mediated by USNR. In all, our work is an interesting and important exploration to expand the classical tetragonal BTO nanoparticles in the treatment of autoimmune diseases, providing a new idea and direction for the biomedical application of piezoelectric ceramics

    Toll-Like Receptor 9 Is Required for Opioid-Induced Microglia Apoptosis

    Get PDF
    Opioids have been widely applied in clinics as one of the most potent pain relievers for centuries, but their abuse has deleterious physiological effects beyond addiction. However, the underlying mechanism by which microglia in response to opioids remains largely unknown. Here we show that morphine induces the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, TLR9 deficiency significantly inhibited morphine-induced apoptosis in microglia. Similar results were obtained when endogenous TLR9 expression was suppressed by the TLR9 inhibitor CpGODN. Inhibition of p38 MAPK by its specific inhibitor SB203580 attenuated morphine-induced microglia apoptosis in wild type microglia. Morphine caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type microglia, but not in TLR9 deficient microglia. In addition, morphine treatment failed to induce an increased levels of phosphorylated p38 MAPK and MAP kinase kinase 3/6 (MKK3/6), the upstream MAPK kinase of p38 MAPK, in either TLR9 deficient or Β΅-opioid receptor (Β΅OR) deficient primary microglia, suggesting an involvement of MAPK and Β΅OR in morphine-mediated TLR9 signaling. Moreover, morphine-induced TLR9 expression and microglia apoptosis appears to require ΞΌOR. Collectively, these results reveal that opioids prime microglia to undergo apoptosis through TLR9 and Β΅OR as well. Taken together, our data suggest that inhibition of TLR9 and/or blockage of Β΅OR is capable of preventing opioid-induced brain damage
    • …
    corecore