271 research outputs found

    GreatSplicing: A Semantically Rich Splicing Dataset

    Full text link
    In existing splicing forgery datasets, the insufficient semantic varieties of spliced regions cause a problem that trained detection models overfit semantic features rather than splicing traces. Meanwhile, because of the absence of a reasonable dataset, different detection methods proposed cannot reach a consensus on experimental settings. To address these urgent issues, GreatSplicing, a manually created splicing dataset with a considerable amount and high quality, is proposed in this paper. GreatSplicing comprises 5,000 spliced images and covers spliced regions with 335 distinct semantic categories, allowing neural networks to grasp splicing traces better. Extensive experiments demonstrate that models trained on GreatSplicing exhibit minimal misidentification rates and superior cross-dataset detection capabilities compared to existing datasets. Furthermore, GreatSplicing is available for all research purposes and can be downloaded from www.greatsplicing.net

    The State and the Arts of Research on Foundation Buried Depth Effect on Building Structure

    Get PDF
    The state and the arts of research on foundation buried depth effect on building structures are reviewed and summarized in detail from such aspects as static response property and dynamic response property, and a brief discussion is carried out on the future developments and studies. Different scholars have conducted research for this aspect of the issue; the conclusions vary because of differences in the conditions of the upper structure stiffness. Superstructure should consider different stiffness conditions a lot of numerical calculations, foundation depth summary obtained reaction influence on the dynamic characteristics and dynamic soil structure interaction system of law

    Reliability modeling and evaluation of MMCs under different redundancy schemes

    Get PDF
    Due to the demand for high reliability, modular multilevel converters (MMCs) are designed with redundant submodules. Redundant submodules can be integrated into the converter by employing different redundancy schemes: The conventional active scheme, the load-sharing active scheme, and the passive scheme. Different schemes have different impacts on the improvement of converter reliability. The contributions of this paper include that an analytical method is proposed to evaluate the reliability of MMCs under different redundancy schemes and the factors' influence on the converter reliability is analyzed to determine the proper redundancy scheme. Reliability models of MMCs under different redundancy schemes are built using Markov chains and the iteration method. Based on the proposed models, the effects of redundant schemes are evaluated in terms of the converter reliability. A case study is conducted to validate the feasibility and robustness of proposed models and to specify the conditions in the favor of each redundancy scheme. The benefits of sharing redundancy among arms are also explored from the reliability point of view. If insulated-gate bipolar transistors (IGBTs) and capacitors are dominant components in a submodule in terms of failure rates, the load-sharing active scheme performs better; otherwise, setting the redundant submodules in an idle state is more effective. It is also found that the number of required redundant submodules is greatly reduced by sharing redundancy among arms

    Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule

    Get PDF
    A novel three-dimensional (3D) fractional plastic flow rule that is not limited by the coordinate basis of the differentiable function is proposed based on the fractional derivative and the coordinate transformation. By introducing the 3D fractional plastic flow rule into the characteristic stress space, a 3D fractional elastoplastic model for soil is established for the first time. Only five material parameters with clear physical significance are required in the proposed model. The capability of the model in capturing the strength and deformation behaviour of soils under true 3D stress conditions is verified by comparing model predictions with test results

    A novel transversely isotropic strength criterion for soils based on a mobilized plane approach

    Get PDF
    The peak shear strength rules of transversely isotropic soils are stress state dependent and dependent on relative orientation between bedding plane and principal stress. Accordingly, the shear strength of transversely isotropic soils exhibits two primary characteristics: (i) the strength curve on the deviatoric plane is asymmetrical with respect to three principal stress axes; (ii) the shear strength changes with the direction angle of the bedding plane when the intermediate principal stress coefficient is a constant. In this paper, the mobilized plane is introduced and used to reveal the failure mechanism of soils. By projecting the microstructure tensor of transversely isotropic soils onto the normal of the mobilized plane, the directionality of the transversely isotropic soils is introduced into the friction rules on the mobilized plane, and a transversely isotropic strength parameter is proposed. The proposed strength parameter can extend isotropic strength criteria into transversely isotropic strength criteria. This mobilized plane approach is used to establish a novel transversely isotropic nonlinear unified strength criterion (TI-NUSC). The difficulty to establish a unified description of the asymmetrical strength curve and its evolution with direction angle is overcome by the established criterion. Comparisons between available test results and the TI-NUSC shows that the TI-NUSC can successfully describe these two primary peak strength characteristics

    Experimental study on seismic behavior of full scale square concrete filled steel tubular stocky columns

    Get PDF
    This study mainly presented a pseudo-static experiment on two full-scale square CFST short columns with the cross-sectional width of 600 mm under combined constant axial load and cyclic lateral load. The seismic performance of the two full-scale CFST columns were investigated. Meanwhile, the plastic hinge length of the specimens was discussed. The test results presented that the specimens suffered bend-shear failure. The local buckling of steel tube occurred at the end of the specimens and the core concrete crushed. The safety redundancy of lateral bearing capacity decreased in full-scale specimen. By the method of physical observation, the plastic hinge length Lp1 was determined mainly according to the range of the local buckling of steel tube. There had a great difference between the prediction of plastic hinge lengths by the existing calculation model and the plastic hinge lengths obtained by the test

    Reliability Analysis of MMCs Considering Submodule Designs with Individual or Series-Operated IGBTs

    Get PDF
    The half-bridge-based modular multilevel converter (MMC) has emerged as the favored converter topology for voltage-source HVDC applications. The submodules within the converter can be constructed with either individual insulated-gate bipolar transistor (IGBT) modules or with series-connected IGBTs, which allows for different redundancy strategies to be employed. The main contribution of this paper is that an analytical method was proposed to analyze the reliability of MMCs with the consideration of submodule arrangements and redundancy strategies. Based on the analytical method, the relative merits of two approaches to adding redundancy, and variants created by varying the submodule voltage, are assessed in terms of overall converter reliability. Case studies were conducted to compare the reliability characteristics of converters constructed using the two submodule topologies. It is found that reliability of the MMC with series-connected IGBTs is higher for the first few years but then decreases rapidly. By assigning a reduced nominal voltage to the series valve submodule upon IGBT module failure, the need to install redundant submodules is greatly reduced

    Characteristics and Stability of Mercury Vapor Adsorption over Two Kinds of Modified Semicoke

    Get PDF
    In an attempt to produce effective and lower price gaseous Hg0 adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mnx+, and O=C–OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0. Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously
    • …
    corecore