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 27 

ABSTRACT 28 

The peak shear strength rules of transversely isotropic soils are stress state dependent and dependent on relative 29 

orientation between bedding plane and principal stress. Accordingly, the shear strength of transversely isotropic 30 

soils exhibits two primary characteristics: (i) the strength curve on the deviatoric plane is asymmetrical with 31 

respect to three principal stress axes; (ii) the shear strength changes with the direction angle of the bedding plane 32 

when the intermediate principal stress coefficient is a constant. In this paper, the mobilized plane is introduced and 33 

used to reveal the failure mechanism of soils. By projecting the microstructure tensor of transversely isotropic 34 

soils onto the normal of the mobilized plane, the directionality of the transversely isotropic soils is introduced into 35 

the friction rules on the mobilized plane, and a transversely isotropic strength parameter is proposed. The 36 

proposed strength parameter can extend isotropic strength criteria into transversely isotropic strength criteria. This 37 

mobilized plane approach is used to establish a novel transversely isotropic nonlinear unified strength criterion 38 

(TI-NUSC). The difficulty to establish a unified description of the asymmetrical strength curve and its evolution 39 

with direction angle is overcome by the established criterion. Comparisons between available test results and the 40 

TI-NUSC shows that the TI-NUSC can successfully describe these two primary peak strength characteristics. 41 

KEYWORDS: Shear strength; Anisotropy; Fabric/structure of soils; Friction; Failure; Sands;  42 
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1 INTRODUCTION 43 

Anisotropy is a significant property of soils and is intrinsically related to the microstructure of soils. 44 

Anisotropic soils exhibit inherent and induced anisotropy (Casagrande & Carillo, 1944). Induced anisotropy is 45 

attributed to plastic deformation associated with loading, while inherent anisotropy is typically treated as a fabric 46 

property in the virgin state before any loadings occur. The simplest form of anisotropy is transverse isotropy, 47 

which is a ubiquitous property of naturally deposited soils. The transverse isotropy has a remarkable influence on 48 

the peak shear strength, which varies with the relative orientation between the loading and bedding plane. The 49 

maximum variation of the bearing capacity for transversely isotropic soils in different loading directions is 50 

approximately 35% (Oda et al., 1978). Such a variation cannot be represented by the isotropic strength criteria. 51 

The neglect of the transverse isotropy in engineering design is potentially hazardous. A proper description of the 52 

strength variation rules for transversely isotropic soils has important implications for the analysis of slope stability 53 

(Su & Liao, 1999) and the bearing capacity of shallow foundations (Fu & Dafalias, 2011) and embankments 54 

(Zdravkovic et al., 2002; Sun et al., 2004), amongst other applications. 55 

Laboratory tests have been conducted to study the strength characteristics of transversely isotropic soils. 56 

These tests have included plane strain tests (Oda et al., 1978; Tatsuoka et al., 1990), true triaxial tests (Lam & 57 

Tatsuoka, 1988; Kirkgard & Lade, 1993) and hollow cylinder tests (Nishimura et al., 2007; Lade et al., 2014; 58 

Yang et al., 2016). The experimental findings show that transversely isotropic soils exhibit two primary peak shear 59 

strength chatacteristics: (i) The strength curve on the deviatoric plane is not symmetrical with respect to the three 60 

principal stress axes when compared with the isotropic strength curve, meanwhile, the effects of the intermediate 61 

principal stress coefficient b (=(σ2-σ3)/( σ1-σ3)) on the strength parameter φ is no longer independent of stress 62 

direction; (ii) the direction angle δ between the normal direction of the bedding plane and the vertical direction 63 

greatly affects the peak shear strength and the strength parameter. Actually, the effects of δ and b are coupled and 64 

the strength curve on the deviatoric plane evolves with δ. 65 
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Compared with the experimental study of peak strength characteristics, research into the corresponding 66 

strength theory is poorly developed. In general, there are four methods to establish transversely isotropic strength 67 

criteria. Firstly, mathematical method, such as the coordinate rotation method (Abelev & Lade, 2004) and the 68 

method of modified Lode angle-based shape function (Mortara, 2010; Lü et al., 2011), was proposed to describe 69 

the asymmetry of the strength curve with respect to the three stress axes. However, these mathematical methods 70 

are only applied to the coaxial condition, i.e., δ=0°. Secondly, the fabric tensor and the stress tensor can be 71 

combined to establish a transversely isotropic strength criterion. The combined tensor of the fabric tensor and the 72 

stress tensor was proposed (Tobita, 1988) and introduced into an isotropic strength criterion to describe the 73 

strength characteristics of transversely isotropic soils (Yao et al., 2017). Additionally, the joint invariant of the 74 

stress tensor and fabric tensor has been defined (Li & Dafalias, 2002; Dafalias et al., 2004) and used to develop 75 

the strength criteria for transversely isotropic soils (Gao et al., 2010; Gao & Zhao, 2012). Thirdly, the method of 76 

projecting the microstructure tensor onto the generalized loading direction was proposed to establish transversely 77 

isotropic strength criterion by defining an anisotropic parameter (Pietruszczak & Mroz, 2000; Pietruszczak & 78 

Mroz, 2001). The anisotropic parameter could be ‘married’ to an isotropic criterion (Lade, 2007; Xiao et al., 2012; 79 

Kong et al., 2013; Lü et al., 2016). Nevertheless, the combination of the fabric/microstructure tensor and the 80 

stress tensor can only characterize the monotonic decrease of the shear strength as δ increases but cannot describe 81 

the non-monotonic variation rules of the shear strength. Thus, a high-order equation was suggested by 82 

Pietruszczak & Guo (2013) and used to modify the Lade criterion (Rodriguez & Lade, 2013). It is a mathematical 83 

approach, in which a least squares method based on polynomial regression was used to determine the parameters. 84 

Consequently, not all parameters in the high-order equation have physical meanings. The fourth method is based 85 

on a new view that the relative orientation between the mobilized plane and the fabric direction could be used to 86 

reflect the non-monotonic variation rules of the shear strength (Liu & Indraratna, 2011; Yao & Kong, 2012; 87 

Oboudi et al., 2016; Chang & Bennett, 2017). However, the non-monotonic variation applies only to a constant b. 88 
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These methods can describe either of the two primary characteristics revealed by experiments, but they are not 89 

good enough to describe both of them in a unified way.  90 

This paper presents a novel strength criterion for transversely isotropic soils based on a mobilized plane 91 

approach which can couple the effects of b and δ in a more physically meaningful way. The concept of the 92 

mobilized plane is introduced to reveal the shear failure mechanism and the strength rules of transversely isotropic 93 

soils. Firstly, a two dimensional (2D) strength parameter is proposed by projecting the 2D microstructure tensor 94 

onto the direction of the mobilized plane to reveal effects of δ on strength rules. Then, a 3D transversely isotropic 95 

strength parameter is proposed by a similar projection under the 3D stress condition. The TI-NUSC is established 96 

by combining the 3D strength parameter and the NUSC. Comparisons between the established TI-NUSC and the 97 

experimental data available indicates the reasonable predictive capability of the TI-NUSC on accounting the 98 

effects of δ and b on peak shear strength rules of transversely isotropic soils. 99 

2 SHEAR FAILURE MECHANISM OF TRANSVERSELY ISOTROPIC SOILS 100 

Shear failure is assumed to occur when the ratio of shear stress (τ) to normal stress (σ) acting on a specific 101 

plane reaches a critical value (Matsuoka & Nakai, 1974; Wood, 1990; Pietruszczak & Mroz, 2001; Liu & 102 

Indraratna, 2011; Lu et al., 2017; Ma et al., 2017). The specific plane can be called the mobilized plane. For 103 

isotropic materials, the mobilized plane depends only on the stress values when failure occurs, and it is 104 

independent of the loading direction. The failure condition can be written as follows: 105 

  f



    (1) 106 

where Φ is a generalized material parameter. It can be the cohesive strength (c) and the internal friction angle (φ) 107 

for soils, and only be φ for cohesionless soils. 108 

The essences of the failure mechanism for soils are the direction of the mobilized plane and the critical value 109 

that the shear-normal stress ratio can reach. For transversely isotropic materials, the determined method of the 110 

mobilized plane is similar to that for isotropic materials. However, the direction of the mobilized plane and the 111 
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critical value that the shear-normal stress ratio can reach are all related not only to the stress values but also to the 112 

relative orientation between loading direction and bedding plane. The failure condition can be expressed as 113 

follows: 114 

  ,f



     (2) 115 

where Θ is a generalized direction angle. As shown in Fig. 1, three components of Θ, i.e., δ, ω and θ, are direction 116 

angles of D in the Oxyz principal stress space, and two of them are independent due to the identical equation 117 

cos2δ+cos2ω+cos2θ=1. 118 

Experimental works under the condition that δ or θ changes with ω=90° have been conducted to study peak 119 

shear strength rules of transversely isotropic soils (Lam & Tatsuoka, 1988; Lade et al., 2014; Yang et al., 2016). 120 

But failure criteria to fully describe the experimental findings have not been developed. How to reveal and 121 

describe these experimental strength rules by the friction rule on the mobilized plane is a difficult and important 122 

task.  123 

2.1 Microstructure tensor for transversely isotropic soils 124 

The direction of the mobilized plane and the critical value that the shear-normal stress ratio can reach are 125 

closely related to the fabric of soils, which can be measured by a microstructure or fabric tensor A (Tobita, 1988; 126 

Pietruszczak & Mroz, 2000) and quantified by the orientations of contacts, particles or voids (Yang et al., 2008; 127 

Shire et al., 2013). The eigenvalues of A are expressed as a1, a2 and a3. For transversely isotropic soils, a2=a3. 128 

Thus, tensor A is represented as follows: 129 

 

1 1

3 0 3

3 3

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

a

a

a



      
      

         
            

A   (3) 130 

where η0=(a1+2a3)/3 is the average value of the eigenvalues of A and reflects the average level of material 131 

properties in different directions. Ω1 and Ω3 are the eigenvalues of the deviatoric tensor, and Ω1+2Ω3=0. Ω1 or Ω3 132 

reflects the degree of anisotropy.  133 
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In the plane perpendicular to the bedding plane, the transverse isotropy can be described by the 2D 134 

microstructure tensor A2D, which is 135 

 
1 12D

0

3 3

0 0 1 0

0 0 0 1

a

a


       
              

2D
A   (4) 136 

where  2D

0 1 3 2a a    is the average of the eigenvalues of A2D, and Ω1+Ω3=0.  137 

2.2 Effect of the directionality of transversely isotropic soils on strength rules 138 

For a 2D stress state, the relative orientation between the bedding plane and mobilized plane is shown in Fig. 139 

2. Fig. 2(a) and Fig. 2(b) are schematic diagrams of the physics and geometry, respectively. As shown in Fig. 2(b), 140 

the z- and y-axes are the stress direction axes in the Oyz stress space, and the normal vector of the bedding plane is 141 

D, which is coaxial with the z%-axis in the Oyz%% physical space. The vector D in Oyz can be represented by a 142 

trigonometric function of the direction angle δ, i.e., D=(cosδ, sinδ). ζ is the angle between D and the normal vector 143 

of the critical mobilized plane, and ζ=min (ζ1, ζ2), where ζ1 is the angle between D and the normal vector of 144 

mobilized plane 1, and ζ2 is the angle between D and the normal vector of mobilized plane 2. The normal vector of 145 

the critical mobilized plane is denoted as N2D in Oyz and as 
2D

N%  in Oyz%%. The failure condition on the mobilized 146 

plane for cohesionless soils can be expressed as follows: 147 

 n

n

tan





   (5) 148 

where    n 1 3 1 3 1 3          and  n 1 3 1 3=2      are the shear and normal stress acting on AC, 149 

respectively. The equivalent form of Eq. (5), i.e.,  1 3 =tan 45 2  o , is used to determine the position of 150 

AC, as shown in Fig. 2(b), and 1OA  , 3OC  . Thus, the normal vector of AC 151 

is     3 1 3 1 1 3,       2D
N  in Oyz and is    2D 2D

1 3, cos ,sinn n   2D
N% % %  in Oyz%%. 152 

The 2D transversely isotropic strength parameter is proposed by projecting the 2D microstructure tensor onto 153 

the normal vector (
2D

N% ) of the critical mobilized plane, which is similar to the definition of the anisotropic 154 

parameter by Pietruszczak and Mroz (2000). 155 
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      
T 2 2

2D 2D 2D 2D 2D

0 1 1 3 31 n n       
  

2D 2D
N A N% % % %   (6) 156 

This projection of the 2D microstructure tensor onto the normal vector of the critical mobilized plane is the 157 

reflection of the effect of the 2D microstructure on frictional characteristics. That is, η2D can reflect the changing 158 

rules of internal friction angle by combining Eq. (5) and Eq. (6), i.e., η2D=tanφ|δ. Where φ|δ is an extended 159 

version of φ which varies with δ. 160 

    
2 2

2D 2D 2Dn
0 1 1 3 3

n

tan 1 n n



 


    
  

% %   (7) 161 

Further, substituting Ω1+Ω3=0 and    
2 2

2D 2D

1 2 1n n % %  into Eq. (7) yields 162 

   2
2D 2D

0 3 1tan 1 1 2 n


     
  

%   (8) 163 

where 2D

1n%  is the cosine of ζ, which can be calculated in terms of N2D and D. 164 

 
2D 3 1
1

1 3 1 3

cos sinn
 

 
   


  

 

2D

2D

N D

N D
%   (9) 165 

 2D

1 cos 45 2n    o%  is derived by combining σ1/σ3=(1+sinφ|δ)/(1-sinφ|δ) with Eq. (9), thus, ζ=45°+φ|δ/2-δ is 166 

obtained. By substituting Eq. (9) into Eq. (8), we obtain an expression which describes how φ|δ changes with δ. 167 

 

2

2D 3 1
0 3

1 3 1 3

tan 1 1 2 cos sin


 
   

   

                  

  (10) 168 

Two material parameters η0
2D and Ω3 can be collectively solved by two linear equations which correspond 169 


  at two different δ values. Taking the case of transversely isotropic Toyoura sand (Oda et al., 1978) as a 170 

demonstrative example here. The friction angles 
0

49.44





o

o
 and 

90
44.22





o

o
 were obtained from plane 171 

strain tests on vertical (δ=0°) and horizontal (δ=90°) samples as shown in Fig. 3 for σ3=196 kPa. 172 

 1 3 0
7.324


 




o
 and  1 3 90

5.610


 



o

 Therefore, η0
2D=1.067 and Ω3=0.126 can be solved from Eq. 173 

(10). 174 

The variation of η2D associated with angle ζ1 can be obtained from Eq. (8). As shown in Fig. 4, η2D for 175 

mobilized plane 1 increases monotonously as ζ1 increases from 0° to 90°. But for mobilized plane 2, the η2D 176 

increases first and then decreases. Soil will fail along the critical mobilized plane which is close to the bedding 177 
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plane (i.e. the plane of weakness). The critical mobilized plane is mobilized plane 1 when 0°≤ζ1<69.72° and is 178 

shown as the red solid line. The critical mobilized plane can be either of the two mobilized plane and ζ2=ζ1, when 179 

ζ1=69.72°. After this, ζ2<ζ1, and the critical mobilized plane becomes mobilized plane 2 when 69.72°<ζ1≤90° and 180 

is shown as the green solid line in Fig. 4. The closer the mobilized plane is to the bedding plane, the more easily 181 

the soil fails.  182 

A further understanding of the failure mechanism of transversely isotropic soils can be obtained by the 183 

correspondence between Fig. 4 and Fig. 5 in terms of the relationship between ζ1 and δ (ζ1=45°+φ|δ/2-δ). 184 

Correspondingly, the relationship between η2D and δ can be calculated using Eq. (10), as shown in Fig. 5. When 185 

0°<δ<90°, the critical mobilized plane is mobilized plane 1 and η2D initially decreases and then increases slightly 186 

with δ. Aδ-Bδ-Cδ in Fig. 5 corresponds to Aζ-Bζ-Cζ in Fig. 4. When -90°<δ<0°, the critical mobilized plane will be 187 

mobilized plane 2, and the corresponding relationship illustrated by the green solid line in Fig. 5 is opposite to that 188 

of 0°<δ<90°. The theoretical predictions (φ|δ=arctanη2D) can capture the experimental observed non-monotonic 189 

variation of φ with the increase of δ for the transversely isotropic sand (Oda et al., 1978; Matsuoka et al., 1984; 190 

Tatsuoka et al., 1990) as shown in Fig. 6. 191 

3 3D TRANSVERSELY ISOTROPIC STRENGTH PARAMETER 192 

Based on the understanding of the failure mechanism, a comprehensive and unified 3D transversely isotropic 193 

strength parameter can be proposed by introducing the concept of the mobilized plane into the anisotropic 194 

parameter. For isotropic soils under a 3D stress state, the position of the mobilized plane in the stress space is 195 

closely related to the stress values only. The loading direction does not affect the shear strength characteristics, 196 

and the φ-b relationship is constant. For transversely isotropic soils, soils themselves possess directionality. The 197 

direction of the mobilized plane is affected by stress values and loading direction. The relative orientation between 198 

the bedding plane and the mobilized plane will affect the peak shear strength characteristics (Liu & Indraratna, 199 

2011; Yao & Kong, 2012) and needs to be analysed. 200 
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3.1 Relative orientation between the bedding plane and mobilized plane 201 

The arbitrary relative orientation between the bedding plane and the mobilized plane can be described using 202 

two angles (Lam & Tatsuoka, 1988; Mroz & Maciejewski, 2002; Lü et al., 2016). However, for the condition that 203 

ω=90°, that is x and x% in coincide as shown in Fig. 7, one angle δ or θ (δ+θ=90°) is sufficient to describe the 204 

relative orientation. The physical coordinate system Oxyz%%% is introduced for describing the direction of the 205 

mobilized plane in physical space, where the z%-axis is coaxial with the normal vector D of the bedding plane. 206 

The direction angle of D in Oxyz is δ; thus, D=(cosδ, 0, sinδ). The normal vector of the mobilized plane ABC is N 207 

in Oxyz, and N=(n x, n y, n z). The direction cosine ni (i=x, y, z) with respect to the σi axis can be expressed as 208 

follows: 209 

 
 

x y z

i

i x y y z z x

n
  

      


 
  (11) 210 

The normal vector of the mobilized plane in Oxyz%%% is expressed as  , ,x y zn n nN% % % % . As shown in Fig. 7, 211 

coszn %  and ζ is the angle between D and N. Thus, cos sinz z yn n n  %  and can be used to describe the 212 

relative orientation of D and N. 213 

The relative orientation between the normal of the bedding plane and the normal of the mobilized plane is 214 

closely related to the stress distribution that acts on a transversely isotropic soil element. Due to the directionality 215 

of transversely isotropic soils, effects of stress distribution is not symmetrical about the three principal stress axes. 216 

We can partition the deviatoric plane into six stress distribution sectors as shown in Fig. 8. The stresses σ1, σ2 and 217 

σ3 acted on a transversely isotropic soil element are distributed in different directions in each sector. The 218 

symmetry of stress distributions is actually associated with δ. The symmetry axis will be the z-axis when δ=0°, the 219 

x-axis when δ=45° and the y-axis when δ=90°. Accordingly, strength characteristics possess the same symmetry 220 

with the stress distribution. 221 

3.2 A new 3D transversely isotropic strength parameter 222 
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The method of projection (Pietruszczak & Mroz, 2000; Pietruszczak & Mroz, 2001) is extended to 3D to 223 

propose a 3D transversely isotropic strength parameter. The effect of the 3D microstructure on the frictional 224 

strength is taken into account by projecting the 3D microstructure tensor A onto the normal vector N% of the 225 

mobilized plane. When combined with the transversely isotropic condition, a 3D strength parameter η can be 226 

obtained: 227 

  2

0 31 1 3m     
 

  (12) 228 

where η0 reflects the average value of η, and Ω3 reflects the degree of anisotropy. mρ is a function that used to 229 

reflect the change rules of η with the increase of δ. To reflect the strength characteristics of different axes related 230 

to δ when ω=90°, a more comprehensive function with the following two features is proposed: (i) it is 231 

independent of δ along the x-axis (σz=σy); (ii) the change rules under the condition that σx=σy or σx=σz are 232 

adjustable. The function that satisfies these two features is the key to develop a 3D transversely isotropic strength 233 

parameter. 234 

The following interpolation function mρ is used in this paper for describing these two features 235 

  I II1m m m       (13) 236 

where ρ is the distribution coefficient that controls the variability of η as δ increases. ψ is a stress state dependent 237 

function and its expression is 238 

 
 

     

2

2 22

z y

z x x y y z

 


     




    
  (14) 239 

where ψ=0 when σz=σy, and Eq. (13) becomes IIm m  ; ψ=1/2 when σx=σy or σx=σz, and Eq. (13) becomes 240 

 I II1 2 1 1 2m m m     .  241 

In Eq. (13), 
I zm n %is the direction cosine of N%, and its expression is I cos sinz ym n n   . IIm  ensures 242 

that the strength parameter η along the x-axis (σz=σy) is independent of δ, specified by the relationship: 243 

 
2 2

II cos sinz ym n n     (15) 244 
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By substituting Eqs. (14)-(15) together with 
I cos sinz ym n n    into Eq. (13), a comprehensive expression 245 

of mρ that satisfies the two features mentioned above can be derived. Then, the expression of η is obtained from 246 

Eq. (12) as follows: 247 

      2 2

0 0 3= 1 3 cos sin 1 cos sinz y z yn n n n               
 

  (16) 248 

It can be used to reflect strength variation rules for different stress distribution. For the stress state of the 249 

x-axis (σz=σy), ψ=0 and nz=ny=σx/(2σx+σy), η describes the strength parameter variation rules of the x-axis, and is 250 

expressed as follows: 251 

    0 3 II 0 31 1 1 1 3 zm n                (17) 252 

Eq. (17) indicates that η is independent of δ when σz=σy. For the stress state of the z-axis (σx=σy) or y-axis (σx=σz), 253 

ψ=1/2 is obtained from Eq. (14) and Eq. (12) becomes 254 

    
2

2 2

0 0 3

1 1
1 3 cos sin 1 cos sin

2 2
z y z yn n n n        

    
          

    

  (18) 255 

As shown in Fig. 9, the trend of η changes from monotonic for ρ=0 (the dashed line) to non-monotonic for ρ=2 256 

(the solid line) when σx=σy. 257 

The 3D transversely isotropic strength parameter η possesses the two features mentioned above and makes it 258 

possible to describe the coupled effects of b and δ in a unified way. In the following section η is combined with an 259 

isotropic strength criterion to develop a transversely isotropic strength criterion. 260 

4 TRANSVERSELY ISOTROPIC NONLINEAR UNIFIED STRENGTH CRITERION 261 

The NUSC (Yao et al., 2004; Lu, 2006; Du et al., 2010; Wang et al., 2018) is applicable to various isotropic 262 

geomaterials, including soil, concrete, and rock. The failure surface of the NUSC in principal stress space is 263 

continuous, smooth and convex as shown in Fig. 10. Strength curve on the deviatoric plane, which reflects the 264 

effect of b on the shear strength, can continuously change from the Drucker-Prager (D-P) strength circle (upper 265 

bound) to the Matsuoka-Nakai (M-N) strength curved triangle (lower bound). By using a power function, the 266 
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cohesion effect, friction effect and hydrostatic pressure effect can be characterized on the meridian plane. 267 

Expression of the NUSC can be written as  268 

  
   

2

1 2

f

1 1 2 3 1 2 3

3 3 6
1

3 9 1

I Iq
M

p I I I I I I I

  


   
  

  (19) 269 

where q  is the equivalent shear strength,  1 2 3 3p       is mean stress in the transitional stress space. α 270 

is a material parameter that reflects the triaxial extension-compression strength ratio at the reference stress, and Mf 271 

is the failure stress ratio at the reference stress. 
1I , 2I  and 3I  are the first, second and third stress invariants in 272 

the transitional stress space respectively, defined as 273 
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  (20) 274 

The stress tensor in the transitional stress space is expressed as  275 

 0

n

ij ij r ij

r

p
p p

p


  

  
    
   

  (21) 276 

where  1 2 3 3p       is the mean stress, pr is the reference stress, σ0 is the three-dimensional tensile 277 

strength, n is the hydrostatic pressure effect index and δij is the Kronecker symbol. 278 

4.1 Nonlinear unified strength criterion for transversely isotropic soils 279 

Due to the parameter independence and extensibility of the NUSC, the 3D strength parameter η can be easily 280 

introduced into the NUSC. For cohesionless soils, σ0=0 and n=1, the simplified form of the NUSC adopted in this 281 

study can be expressed as 282 

  
   
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f

1 1 2 3 1 2 3

3 3 6
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3 9 1

I Iq
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p I I I I I I I

  
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   
  

  (22) 283 

where Mf degrades into the stress ratio in normal stress space when σ0=0 and n=1. It is the reflection of the 284 

frictional characteristics, which can be calculated by the internal friction angle φc under triaxial compressive 285 

conditions, i.e., Mf=6sinc/(3-sinc). I1, I2 and I3 are the first, second and third stress invariants in the normal 286 
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stress space respectively, defined as 287 
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  (23) 288 

The frictional characteristics of transversely isotropic soils are strongly dependent on the loading direction 289 

(Imam et al., 2002; Lade, 2008; Gao et al., 2010). Thus, taking η as an extension of the failure stress ratio Mf, the 290 

TI-NUSC can be expressed as follows: 291 

  
   

 2 21
1 2 0 3

1 2 3 1 2 3

21
3 1 1 1 3

3 9 1

q I
I I m
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        
     

  (24) 292 

Fig. 11 provides a graphical comparison of the NUSC and TI-NUSC when δ=0° at the same internal friction 293 

angle c 0


 o . It clearly shows that the TI-NUSC strength surface is asymmetrical with respect to σx- and σy-axes. 294 

4.2 Coupled effects of b and δ on strength rules 295 

The effects of b on strength rules within each of the six stress distribution sectors introduced in Fig. 8 are the 296 

same for isotropic soils and can be well described by the NUSC. But for transversely isotropic soils, effects of b 297 

are no longer symmetrical about three principal stress axes at the same time. Strength rules are closely related to 298 

the stress distributions in the six sectors when δ is constant. The coupled effects of b and δ make transversely 299 

isotropic soils exhibit the two primary peak shear strength characteristics described in the introduction. 300 

4.2.1 Effects of b on strength rules when δ=0° 301 

As shown in Fig. 12, three stress distribution sectors are sufficient due to the symmetry with respect to the 302 

σz-axis when δ=0°. In this case, Eq. (13) becomes 303 

 
x y

z

x y y z z x

m n

 

     
 

 
  (25) 304 

The stresses (σ1, σ2 and σ3) are distributed in these three sectors as shown in Fig. 12. Thus, the specific 305 

expression of mρ can be obtained from Eq. (25) in terms of R=σ1/σ3 and b in these sectors as follows: 306 

In sector I (σx=σ2, σy=σ3 and σz=σ1):  307 
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  (26) 308 

In sector II (σx=σ1, σy=σ3 and σz=σ2): 309 
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R
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R bR b bR b R
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  (27) 310 

In sector III (σx=σ1, σy=σ2 and σz=σ3): 311 
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  (28) 312 

η0 and Ω3 in Eq. (24) can be obtained from internal friction angles measured under triaxial compression 313 

perpendicular and along the bedding plane ( c 0


 o and c 90


 o ). For conventional triaxial compression condition 314 

(i.e., b=0), Eq. (24) can be simplified in terms of the principal stress ratio Rc (= (1+sinφc)/(1-sinφc))  315 
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  (29) 316 

where c 0


 o  and c 90


 o  can be obtained from the left side of Eq. (29), and 
0

m   o
 and 

90
m   o

 can be 317 

obtained from Eq. (26) and Eq. (28), respectively. These are substituted into Eq. (29) and a binary system of linear 318 

equations is thus obtained: 319 
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  (30) 320 

η0 and Ω3 are then collectively solved by Eq. (30). 321 

On the same deviatoric plane, p=200 kPa and α=1/3 is taken as a special case for demonstration. For a fixed 322 

value of c 0
35





o

o
 and values of c 90


 o  between 30° and 40°, the solved values of η0 and Ω3 are listed in 323 

Table 1. 324 

As shown in Fig. 13, the fixed value of c 0
35





o

o
 makes each strength curve on the deviatoric plane pass 325 

through the same point, and the TI-NUSC curves are symmetrical with respect to σz only. The NUSC curve is 326 

shown by a black solid line when c 90
=35




 o

o
. As c 90


 o  increases from 35° to 40°, η0 increases, and Ω3 327 
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decreases from 0. The size of the corresponding TI-NUSC curves increase, which means that the shear strength 328 

along the bedding plane is higher than that along the normal of the bedding plane. As c 90


 o  decreases from 35° 329 

to 30°, η0 decreases, and Ω3 increases from 0. The size of the corresponding TI-NUSC curves decrease, as the 330 

bedding plane is the plane of weakness. 331 

As indicated by the solid dots in Fig. 13, the maximum shear strength dots of the TI-NUSC are close to but 332 

not directly on the σx- and σy-axes. The maximum shear strength dots are in sector II when Ω3>0, and the 333 

maximum shear strength dots are in sector III when Ω3<0. The maximum shear strength move further away from 334 

the axes as the absolute value of Ω3 increases. 335 

Corresponding to Fig. 13, Fig. 14 shows the φ-b curves for different values of c 90


 o . In sector I, σ1 is 336 

perpendicular to the bedding plane. The φ-b curves for different c 90


 o  are almost the same. Thus, the effect of 337 

anisotropy on φ can be ignored in this sector. In sector II, σ2 is perpendicular to the bedding plane, and the effect 338 

of anisotropy increases significantly as b decreases from 1 to 0. In sector III, σ3 is perpendicular to the bedding 339 

plane. There are a series of approximately parallel φ-b curves for different c 90


 o . The φ-b curves and the 340 

corresponding stress distribution in sectors IV, V and VI are symmetrical to these in sectors III, II and I, 341 

respectively. The NUSC can be used to approximately describe the strength behaviour when the stress distribution 342 

is consistent with that in sector I. In sector III, the approximately parallel φ-b curves could also be estimated by 343 

multiplying φc in the NUSC by a scaling factor, particularly when the degree of anisotropy is small. However, the 344 

transverse isotropy must be considered by η when the stress distribution is consistent with that in sector II, that is, 345 

the isotropic strength criterion is incapable of describing behaviour under these conditions. 346 

The effects of η0 or Ω3 can also be obtained, in a similar way to previous analysis. For a given value of 347 

Ω3=0.186, the effect of η0 on the strength curve on the deviatoric plane is shown in Fig. 15. The strength curves 348 

vary from a quasi-circle to a curved triangle on the same deviatoric plane as η0 increases. For a given value of 349 

η0=1.267, the effect of Ω3 on the strength curve is shown in Fig. 16. The strength curves seem to be pulled up as 350 
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Ω3 increases. 351 

The value of α, which reflects the triaxial extension-compression strength ratio, is constant for a given 352 

geomaterial. As α changes from 0 to 1, the corresponding TI-NUSC curves are shown in Fig. 17 for 353 

c 0
35





o

o
 and c 90

30





o

o
. There are a series of continuous, smooth and convex strength curves, in which 354 

the lower bound (α=0) and upper bound (α=1) are derived from the M-N criterion and D-P criterion, respectively. 355 

The maximum shear strength dots for α=0 are in sector II rather than on the σx- and σy-axes. As α increases, the 356 

dots in sector II move further away from the σx- and σy-axes. For α=1, the maximum shear strength dots return to 357 

the -σx- and -σy-axes. 358 

4.2.2 Effects of δ on strength rules 359 

Four parameters η0=1.267, Ω3=0.186, α=1/3 and ρ=1.200 are taken as a case study to analyse the effect of δ 360 

on the strength rules of transversely isotropic soils. The strength curves on the deviatoric plane of p=200 kPa with 361 

the different δ values are predicted in Fig. 18. The strength curves of δ (=0°, 22.5°, 45°) shown in Fig. 18(a) and 362 

those of 90°-δ (=90°, 67.5°, 45°) shown in Fig. 18(b) are symmetrical about the σx-axis. The maximum shear 363 

strength dots of the strength curves close to the principal stress axes also change with δ, as shown by solid dots in 364 

Fig. 18. The corresponding φ-b curves are shown in Fig. 19. The φ-b curves in sectors I-VI of Fig. 19(a) are the 365 

same with that in sectors IV-III-II-I-VI-V of Fig. 19(b), which also corresponds to the symmetry of strength 366 

curves. As δ increases from 0° to 90°, the variations of φ in sectors II, I and VI are predicted as shown in Fig. 20. 367 

The variations of φ as δ increases in sectors III, IV and V are inversely symmetric with those in sectors II, I and VI, 368 

respectively.  369 

4.2.3 Coupled effects of b and δ on strength rules  370 

The strength curves shown in Fig. 18 can be extended into a strength surface shown in Fig. 21, which shows 371 

that the strength curve on the deviatoric plane evolves with δ. The non-monotonic variation of shear strength 372 

under the triaxial compression as δ increases is illustrated by this strength surface. Correspondingly, the coupled 373 
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effect of b and δ on the strength parameter φ can be described by the φ-δ-b surface as shown in Fig. 22, which is 374 

the combination of Fig. 19 and Fig. 20. It is shown that the φ-b curve evolves with δ and the φ-δ curve changes 375 

with b in each of six sectors. These two variation rules shown in Fig. 22 are associated with the material direction 376 

and stress condition, respectively. 377 

4.3 Determined methods of material parameters 378 

There are four material parameters, i.e., η0, Ω3, α and ρ, with clear physical meaning in the established 379 

TI-NUSC. These material parameters can be determined by at least four specific types of test results, as shown in 380 

Fig. 23.  381 

4.3.1 Determination of η0 and Ω3 382 

c 0


 o  and c 90


 o  are used to solve η0 and Ω3 from Eq. (30). c 0


 o  and c 90


 o  are the internal friction 383 

angles obtained under conventional triaxial compression from samples with δ=0° and δ=90°, respectively, as 384 

shown in Fig. 23(a) and (b). 385 

4.3.2 Determination of α 386 

The method for calculating α for isotropic soils (Yao et al., 2004; Lu, 2006; Du et al., 2010) can be extended 387 

for transversely isotropic soils with a constant direction angle δ as follows: 388 
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  (31) 389 

Under the condition that δ=0° and    c c cMN DP
q q q  , Eq. (31) can be transformed into Eq. (32). 390 
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  (32) 391 

In Eq. (32), ηDP|δ=0°=3(Re|δ=0°-1)/(2Re|δ=0°+1), ηMN|δ=0°=3(Re|δ=0°-1)/(Re|δ=0°+2) and 392 

ηe|δ=0°=η0[1+Ω3(Re|δ=0°-1)/(Re|δ=0°+2)], where    e e e0 0 0
1 sin 1 sinR

  
 

  
  o o o . e 0


 o  is the friction 393 

angle obtained from the sample with δ=0° under conventional triaxial extension, as shown in Fig. 23(c). 394 
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4.3.3 Determination of ρ 395 

ρ is required to capture the variation of shear strength as δ increases from 0° to 90°. Samples with 0°<δ<90° 396 

as shown in Fig. 23(d) are tested under triaxial compression. The obtained internal friction angle c 
  is used to 397 

calculate ρ, and the expression can be transformed from Eq. (24). 398 
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  (33) 399 

In Eq. (33),      c c cc
= 3 1 2q p R R  

    , where    c c c1 sin 1 sinR
  

    . mI and IIm  can 400 

be obtained from Eq. (15) based on cR


. 401 

5 VERIFICATION 402 

An experimental database has been compiled to study the coupled effects of δ and b on the peak shear 403 

strength behaviour of transversely isotropic soils when ω=90° and to verify the proposed criterion. The database 404 

comprises Toyoura sand (Lam & Tatsuoka, 1988), Nevada sand (Lade et al., 2014) and Leighton Buzzard sand 405 

(Yang et al., 2016). Material parameters are determined based on the determined method of this paper and listed in 406 

Table 2.  407 

5.1 Toyoura sand 408 

Air-pluviated Toyoura sand was tested by Lam & Tatsuoka (1988) to study the effects of b and initial 409 

anisotropic fabric on the peak shear strength. Drained tests in triaxial compression (b=0), plane strain (b≈0.3) and 410 

triaxial extension (b=1) were performed when ω=90° and δ=0°, 30°, 60° and 90°. The shear strength data for 411 

σ3=98 kPa are summarized and found to be strongly influenced by b and δ. Five test results circled in Fig. 24 are 412 

used to determine the material parameters listed in Table 2, where the two points labelled 4 are the same test 413 

results displayed at different locations. Points 1 and 4 are used to determine η0 and Ω3. Subsequently, α can be 414 

obtained from point 5 by combining values of η0 and Ω3. Four points, i.e., 1, 2, 3 and 4, are used to determine ρ. 415 

The evolution of the TI-NUSC curves with δ for Toyoura sand is shown in Fig. 24. The test data and predicted 416 
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curve on the deviatoric plane are compared in Fig. 25 for the case of δ=0°. The isotropic NUSC strength curve 417 

with the same 
c 0


 o  is also shown. The availability of the TI-NUSC is verified by comparing the test data with 418 

the predicted strength surface and curve in Fig. 24 and Fig. 25. The comparison shows that the peak shear strength 419 

variation rules of Toyoura sand can be well captured by the proposed strength criterion. 420 

5.2 Nevada sand 421 

A total of 44 drained torsion shear tests on fine Nevada sand were performed by Lade et al. (2014) with an 422 

initial effective confining stress of 100 kPa and with 25 combinations of constant b and δ. The open circles shown 423 

in Fig. 26 are the original data from Figs. 8-12 in the original paper (Lade et al., 2014). If there is more than one 424 

point around the target δ- and b-values, the average of the internal friction angles is taken for comparison, as 425 

indicated by the solid squares in Fig. 26. The 25 test points obtained are shown by the red cube in Fig. 27. Four 426 

test results are sufficient to determine the material parameters. However, additional test data are needed because of 427 

the discrete nature of the test results. Ten test points that are circled and numbered as 1-10 in Fig. 27 are used to 428 

determine the material parameters. Points 1 and 5 are used to determine η0 and Ω3. After that, point 6 together 429 

with 1 and point 10 together with 5 are used to determine α. The triaxial compression test points 1, 2, 3, 4 and 5 430 

can be used to obtain ρ|b=0=1.08 as listed in Table 2, and the triaxial extension test points 7, 8, and 9 together with 431 

η0, Ω3 and α can be used to determine ρ|b=1=2.224. Thus, the average value ρ=1.652 can be obtained to capture the 432 

variation of the internal friction angle with δ. Fig. 27 and Fig. 28 give a comprehensive comparison between the 433 

test data and predicted curves. The effects of δ and b on φ of transversely isotropic Nevada sand shown in Fig. 27 434 

can be well captured by the proposed criterion. The effects of δ and b on peak shear strength can be captured by 435 

the evolution of the strength curve, as shown in Fig. 28. Fig. 29 shows a comparison between the test data and the 436 

strength curves on the deviatoric plane predicted by the TI-NUSC and the isotropic NUSC. The overall 437 

satisfactory performance of the TI-NUSC in predicting the strength rules for Nevada sand can be observed at each 438 

δ value. 439 
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5.3 Leighton Buzzard sand 440 

A series of hollow cylinder torsional shear tests were performed by Yang et al. (2016) on dense Leighton 441 

Buzzard sand with various combinations of δ and b. The angle δ of the samples were 0°, 15°, 30°, 60°, 75° and 442 

90°. The intermediate principal stress coefficient b was set as 0, 0.2, 0.5 and 1 with a constant mean effective 443 

stress of p=200 kPa. The test results are shown by dots in Fig. 30-Fig. 32. Seven points circled and numbered as 444 

1-7 in Fig. 30 are used to determine the material parameters. Points 1 and 6 are used to determine η0 and Ω3. 445 

Points 2, 3, 4 and 5 together with η0 and Ω3 can determine ρ. α is determined by points 1 and 7. The determined 446 

material parameters are listed in Table 2. The comparison between the test data and the φ-δ-b surface predicted by 447 

the TI-NUSC is shown in Fig. 30. The effects of δ and b on peak shear strength are captured by the evolution of 448 

the TI-NUSC strength curve as shown in Fig. 31. The variation rules that the strength parameter φ and the peak 449 

shear strength decrease initially decreases and then increases when b is constant are well captured as shown in Fig. 450 

30 and Fig. 31. The clearer comparisons between the test data and the strength curves predicted by the TI-NUSC 451 

and the NUSC with 
c 0

=37.23



 o

o  on the deviatoric plane are shown in Fig. 32. The predicted surfaces and 452 

curves can properly capture the coupled effects of b and δ in a unified way as shown by comparisons with 453 

experimental data. 454 

6 CONCLUSIONS 455 

In this paper, the failure mechanism of soils was introduced and analysed for transversely isotropic soils. The 456 

essences of the failure mechanism, i.e., the direction of the mobilized plane and the critical value that the 457 

shear-normal stress ratio acting on that plane can reach are all affected by the microstructure of transversely 458 

isotropic soils. Based on the understanding of the failure mechanism, the effects of the directionality of 459 

transversely isotropic soils on shear strength rules were analysed. And further, a comprehensive and unified 3D 460 

transversely isotropic strength parameter was proposed. The proposed strength parameter can reflect the variation 461 

of the shear strength with the direction angle of the bedding plane. The TI-NUSC was then established by 462 
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combining the 3D transversely isotropic strength parameter with the NUSC. Two primary strength characteristics 463 

that the asymmetry of the strength curve with respect to the three principal stress axes and variability of shear 464 

strength with the bedding plane direction angle δ can thus be reflected in a unified way.  465 

Four material parameters are included in the TI-NUSC. These material parameters have clear physical 466 

meanings and can be easily determined by conventional triaxial tests. The established TI-NUSC was verified 467 

favourably against available test data of transversely isotropic soils. Furthermore, the strength surface is 468 

continuous, smooth and convex and could be used to construct elastoplastic constitutive models for transversely 469 

isotropic soils. This mobilized plane approach for establishing transversely isotropic strength criteria could also be 470 

suitable for developing strength criteria for other geomaterials, like concrete or rock. 471 
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NOTATION 

A2D 2D microstructure tensor

A 3D microstructure tensor

a1, a2, a3 eigenvalues of the microstructure tensor

1, 2, 3 eigenvalues of the deviatoric microstructure tensor

D normal vector of the bedding plane

d1, d2, d 3 direction cosines of the normal vector D

, ,  direction angle of the normal vector D in the Oxyz principal stress space 

N2D normal vector of the mobilized plane in the Oyz stress space

2DN normal vector of the mobilized plane in the Oyz  physical space

2D 2D
1 3,n n direction cosines of 2DN  in the Oyz  physical space

N normal vector of the mobilized plane in the Oxyz stress space

n x, n y, n z direction cosines of N in the Oxyz stress space

N normal vector of the mobilized plane in the Oxyz  physical space

, ,x y zn n n direction cosines of N  in the Oxyz  physical space

angle between the bedding plane and mobilized plane

x, y, z principal stresses

I1, I2, I3 first, second and third stress invariants

1 2 3I I I first, second and third stress invariants in the in the transitional stress space

,  shear and normal stress acting on the mobilized plane

p mean principal stress (p=1/3( + + 3))

q deviatoric stress (
2 22

1 2 2 3 3 11 2q )



Mf failure stress ratio 

R principal stress ratio (R= / 3)

b intermediate principal stress coefficient (b= ( 2 3)/( 1 3))

internal friction angle

c internal friction angle under triaxial compressive conditions

e internal friction angle under triaxial extensive conditions

2D 2D transversely isotropic strength parameter

2D
0 average value of 2D

3D transversely isotropic strength parameter

0 average value of a1, a2 and a3

c stress ratio under triaxial compressive conditions

e stress ratio under triaxial extensive conditions

triaxial extension compression strength ratio

distribution coefficient

 generalized material parameter 

 generalized direction angle 



Table 1 Material parameter values for demonstration

c| =0° c| =90° 0 3

35°

40° 1.559 -0.140

37.5° 1.490 -0.075

35° 1.418 0

32.5° 1.344 0.086

30° 1.267 0.186 



Table 2 Values of the material parameters for the TI-NUSC

Soils 0 3 

Toyoura sand (Lam & Tatsuoka, 1988) 1.613 0.085 0.365 1.222 

Nevada sand (Lade et al., 2014) 1.476 0.111 0.564 1.080 

Leighton Buzzard sand (Yang et al., 2016) 1.359 0.172 0.449 1.595 




































































































