356 research outputs found

    The expression of PLK-1 in cervical carcinoma: a possible target for enhancing chemosensitivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polo-like kinase-1 (PLK-1) is reported to be upregulated in a variety of human tumors and is implicated in cell proliferation and survival. However, its importance in cervical carcinoma has not yet been fully elucidated.</p> <p>Methods</p> <p>We examined PLK-1 expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we blocked PLK-1 expression in HeLa cells using specific siRNA and detected the cell cycle, cell proliferation and chemosensitivity using western blotting, MTT and flow cytometry.</p> <p>Results</p> <p>We provide evidence that expression of PLK-1 exists in human cervical carcinoma tissues and establish an association with tumor size. Furthermore, we show that PLK-1 knockdown by transfection of siRNA induces accumulation of HeLa cells in the G2/M cell cycle phase and enhances cisplatin-induced apoptosis.</p> <p>Conclusion</p> <p>Our results indicate that PLK-1 production in HeLa cells might be critical in determining whether cells survive or undergo apoptosis. Therefore, targeting PLK-1 might be a promising strategy for enhancing sensitivity to chemotherapeutic reagents in cervical carcinoma.</p

    Intramode-correlation-enhanced phase sensitivities in an SU(1,1) interferometer

    Get PDF
    We theoretically derive the lower and upper bounds of quantum Fisher information (QFI) of an SU(1,1) interferometer whatever the input state chosen. According to the QFI, the crucial resource for quantum enhancement is shown to be large intramode correlations indicated by the Mandel Q parameter. The subtraction of photons from the squeezed vacuum state has the effect of increasing the average photon number of the new field state, as well as the intramode correlations. For example, for a coherent state ⊗ a squeezed vacuum state with a given fixed input mean number of photons as the input, if p photons are subtracted from the squeezed-vacuum state before inputting the SU(1,1) interferometer, the phase sensitivities can be improved due to the intramode-correlation increment

    Dazomet fumigation modification of the soil microorganism community and promotion of Panax notoginseng growth

    Get PDF
    IntroductionPanax notoginseng, a medicinal herb in China, is attacked by several pathogens during its cultivation. Dazomet (DZ) is a soil fumigant that is effective in controlling soil-borne pathogens, but its long-term effects on P. notoginseng growth and soil properties are unknown.MethodsWe conducted field experiments over two consecutive years to assess the impact of three concentrations of DZ fumigation (35 kg/666.7 m2, 40 kg/666.7 m2, and 45 kg/666.7 m2) on soil physicochemical properties, microbial diversity, and P. notoginseng growth. Correlation analyses were performed between microbial community changes and soil properties, and functional predictions for soil microorganisms were conducted.ResultsDZ fumigation increased total nitrogen, total phosphorus, total potassium, available phosphorus, available potassium, and ammonia nitrogen levels in the soil. DZ fumigation promoted the nutrient accumulation and improvement of agronomic traits of P. notoginseng, resulted in a 2.83–3.81X yield increase, with the highest total saponin content increasing by 24.06%. And the 40 kg/666.7 m2 treatment had the most favorable impact on P. notoginseng growth and saponin accumulation. After DZ fumigation, there was a decrease in the relative abundance of pathogenic fungi such as Fusarium, Plectosphaerella, and Ilyonectria, while beneficial bacteria such as Ramlibacter, Burkholderia, and Rhodanobacteria increased. The effects of fumigation on soil microorganisms and soil physicochemical properties persisted for 18 months post-fumigation. DZ fumigation enhanced the relative abundance of bacteria involved in the biosynthesis of secondary metabolites and arbuscular mycorrhizal fungi, reduced the relative abundance of plant–animal pathogenic fungi, reduced the occurrence of soil-borne diseases.ConclusionIn conclusion, DZ fumigation enhanced soil physicochemical properties, increased the proportion of beneficial bacteria in the soil, and rebalanced soil microorganism populations, consequently improving the growth environment of P. notoginseng and enhancing its growth, yield, and quality. This study offers a theoretical foundation for DZ fumigation as a potential solution to the continuous cropping issue in perennial medicinal plants such as P. notoginseng

    Spatial and temporal clustering analysis of tuberculosis in the mainland of China at the prefecture level, 2005-2015

    Get PDF
    BACKGROUND: Tuberculosis (TB) is still one of the most serious infectious diseases in the mainland of China. So it was urgent for the formulation of more effective measures to prevent and control it. METHODS: The data of reported TB cases in 340 prefectures from the mainland of China were extracted from the China Information System for Disease Control and Prevention (CISDCP) during January 2005 to December 2015. The Kulldorff\u27s retrospective space-time scan statistics was used to identify the temporal, spatial and spatio-temporal clusters of reported TB in the mainland of China by using the discrete Poisson probability model. Spatio-temporal clusters of sputum smear-positive (SS+) reported TB and sputum smear-negative (SS-) reported TB were also detected at the prefecture level. RESULTS: A total of 10 200 528 reported TB cases were collected from 2005 to 2015 in 340 prefectures, including 5 283 983 SS- TB cases and 4 631 734 SS + TB cases with specific sputum smear results, 284 811 cases without sputum smear test. Significantly TB clustering patterns in spatial, temporal and spatio-temporal were observed in this research. Results of the Kulldorff\u27s scan found twelve significant space-time clusters of reported TB. The most likely spatio-temporal cluster (RR = 3.27, P \u3c  0.001) was mainly located in Xinjiang Uygur Autonomous Region of western China, covering five prefectures and clustering in the time frame from September 2012 to November 2015. The spatio-temporal clustering results of SS+ TB and SS- TB also showed the most likely clusters distributed in the western China. However, the clustering time of SS+ TB was concentrated before 2010 while SS- TB was mainly concentrated after 2010. CONCLUSIONS: This study identified the time and region of TB, SS+ TB and SS- TB clustered easily in 340 prefectures in the mainland of China, which is helpful in prioritizing resource assignment in high-risk periods and high-risk areas, and to formulate powerful strategy to prevention and control TB

    Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria

    Get PDF
    The vast majority of oceanic dimethylsulfoniopropionate (DMSP) is thought to be catabolized by bacteria via the DMSP demethylation pathway. This pathway contains four enzymes termed DmdA, DmdB, DmdC and DmdD/AcuH, which together catabolise DMSP to acetylaldehyde and methanethiol as carbon and sulfur sources, respectively. Whilst molecular mechanisms for DmdA and DmdD have been proposed, little is known of the catalytic mechanisms of DmdB and DmdC, which are central to this pathway. Here we undertake physiological, structural and biochemical analyses to elucidate the catalytic mechanisms of DmdB and DmdC. DmdB, a 3-methylmercaptopropionate (MMPA)-coenzyme A (CoA) ligase, undergoes two sequential conformational changes to catalyze the ligation of MMPA and CoA. DmdC, a MMPA-CoA dehydrogenase, catalyzes the dehydrogenation of MMPA-CoA to generate MTA-CoA with Glu435 as the catalytic base. Sequence alignment suggests that the proposed catalytic mechanisms of DmdB and DmdC are likely widely adopted by bacteria using the DMSP demethylation pathway. Analysis of the substrate affinities of involved enzymes indicates that Roseobacters kinetically regulate the DMSP demethylation pathway to ensure DMSP functioning and catabolism in their cells. Altogether, this study sheds novel lights on the catalytic and regulative mechanisms of bacterial DMSP demethylation, leading to a better understanding of bacterial DMSP catabolism
    • …
    corecore