156 research outputs found

    Characterization of a cryptic plasmid pSM429 and its application for heterologous expression in psychrophilic Pseudoalteromonas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Pseudoalteromonas </it>is an important genus widespread in marine environment, and a lot of psychrophilic <it>Pseudoalteromonas </it>strains thrive in deep sea and polar sea. By now, there are only a few genetic systems for <it>Pseudoalteromonas </it>reported and no commercial <it>Pseudoalteromonas </it>genetic system is available, which impedes the study of <it>Pseudoalteromonas</it>, especially for psychrophilic strains. The aim of this study is to develop a heterologous expression system for psychrophilic <it>Pseudoalteromonas</it>.</p> <p>Results</p> <p>A cryptic plasmid pSM429 isolated from psychrophilic <it>Pseudoalteromonas </it>sp. BSi20429 from the Arctic sea ice, was sequenced and characterized. The plasmid pSM429 is 3874 bp in length, with a G+C content of 28%. Four putative open reading frames (ORFs) were identified on pSM429. Based on homology, the ORF4 was predicted to encode a replication initiation (Rep) protein. A shuttle vector (<it>Escherichia coli, Pseudoalteromonas</it>), pWD, was constructed by ligating pSM429 and pUC19 and inserting a chloramphenicol acetyl transferase (CAT) cassette conferring chloramphenicol resistance. To determine the minimal replicon of pSM429 and to check the functionality of identified ORFs, various pWD derivatives were constructed. All derivatives except the two smallest ones were shown to allow replication in <it>Pseudoalteromonas </it>sp. SM20429, a plasmid-cured strain of <it>Pseudoalteromonas </it>sp. BSi20429, suggesting that the <it>orf4 </it>and its flanking intergenic regions are essential for plasmid replication. Although not essential, the sequence including some repeats between <it>orf1 </it>and <it>orf2 </it>plays important roles in segregational stability of the plasmid. With the aid of pWD-derived plasmid pWD2, the erythromycin resistance gene and the <it>cd </it>gene encoding the catalytic domain of a cold-adapted cellulase were successfully expressed in <it>Pseudoalteromonas </it>sp. SM20429.</p> <p>Conclusions</p> <p>Plasmid pSM429 was isolated and characterized, and the regions essential for plasmid replication and stability were determined, helping the development of pSM429-based shuttle vectors. The shuttle vectors pWD and its derivatives could be used as cloning vectors for <it>Pseudoalteromonas</it>, offering new perspectives in the genetic manipulation of <it>Pseudoalteromonas </it>strains. With the aid of pWD-derived vector and its host, the erythromycin resistance gene and the <it>cd </it>gene of a cold-adapted protein were successfully expressed, indicating that the potential use of this system for recombinant protein production, especially for cold-adapted proteins.</p

    Baicalein inhibits acinar-to-ductal metaplasia of pancreatic acinal cell AR42J via improving the inflammatory microenvironment

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers. Recent research has demonstrated that chronic pancreatitis (CP) is associated with an increased risk of PDAC, partly due to acinar-to-ductal metaplasia (ADM). Baicalein has been shown to exert anti-inflammatory and anti-tumor effects for CP or PDAC, respectively. The aim of our study was to investigate the effect of baicalein, and the putative underlying mechanism, on inflammatory cytokines-induced ADM of rat pancreatic acinar cell line AR42J. To investigate ADM and baicalein effects in vitro, AR42J were treated with recombinant rat Tumor Necrosis Factor alpha (rTNFα) with or without baicalein for 5 days. Results showed that rTNFα-induced AR42J cells switched their phenotype from dominantly amylase-positive acinar cells to dominantly cytokeratin 19-positive ductal cells. Moreover, expression of the transcripts for TNFα or Hes-1, a Notch target, was up-regulated in these cells. Interestingly, baicalein reduced the population of ADM as well as cytokines gene expression but not Hes-1. Baicalein inhibited NF-κB activation induced by rTNFα in AR42J, but no effect on Notch 1activation. Moreover, baicalein suppressed the secretion of TNFα and Nitric Oxide (NO) in macrophages stimulated with LPS and further inhibited ADM of conditional medium-treated AR42J cells. Baicalein also suppressed the inflammatory response of LPS-activated macrophages, thereby inhibited ADM of AR42J by altering their microenvironment. Taken together, our study indicates that baicalein reduces rTNFα-induced ADM of AR42J cells by inhibiting NF-κB activation. It also sheds new light on Chinese material medica therapy of pancreatitis and thereby prevention of PDAC

    Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N -oxide

    Get PDF
    Trimethylamine (TMA) and trimethylamine N-oxide (TMAO) are widespread in the ocean and are important nitrogen source for bacteria. TMA monooxygenase (Tmm), a bacterial flavin-containing monooxygenase (FMO), is found widespread in marine bacteria and is responsible for converting TMA to TMAO. However, the molecular mechanism of TMA oxygenation by Tmm has not been explained. Here, we determined the crystal structures of two reaction intermediates of a marine bacterial Tmm (RnTmm) and elucidated the catalytic mechanism of TMA oxidation by RnTmm. The catalytic process of Tmm consists of a reductive half-reaction and an oxidative half-reaction. In the reductive half-reaction, FAD is reduced and a C4a-hydroperoxyflavin intermediate forms. In the oxidative half-reaction, this intermediate attracts TMA through electronic interactions. After TMA binding, NADP+ bends and interacts with D317, shutting off the entrance to create a protected micro-environment for catalysis and exposing C4a-hydroperoxyflavin to TMA for oxidation. Sequence analysis suggests that the proposed catalytic mechanism is common for bacterial Tmms. These findings reveal the catalytic process of TMA oxidation by marine bacterial Tmm and first show that NADP+ undergoes a conformational change in the oxidative half-reaction of FMOs

    Automatic Ar-40/Ar-39 Dating Techniques Using Multicollector ARGUS VI Noble Gas Mass Spectrometer with Self-Made Peripheral Apparatus

    No full text
    A new fully automatic Ar-40/Ar-39 laboratory with a Thermo Scientific(C) ARGUS VI mass spectrometer has been established in China University of Geosciences (Wuhan). We designed and developed a mini efficient preparation system (80 mL), a CO2 laser for heating samples, a crusher for extracting fluid inclusions within K-poor minerals and an air reservoir (31 L) and pipette (0.1 mL) system. The ARGUS VI mass spectrometer is operated by the Qtegra Noble Gas software, which can control the peripheral accessories, such as pneumatic valves, CO2 laser and crusher through a PeriCon (peripheral controller). The experimental procedures of atmospheric argon analyses, Ar-40/Ar-39 dating by laser stepwise heating and by progressive crushing in vacuo, can be fully automatically performed. The weighted mean of atmospheric Ar-40/Ar-36 ratios is 302.22 +/- 0.03 (1 sigma, MSWD=0.74, n=200), indicating that air reservoir and pipette system and the whole instrument system are very stable. This laboratory is a successful pioneer example in China to establish a new noble gas laboratory with self-made peripheral accessories expect for the mass spectrometer

    Analysis of gene expression and histone modification between C4 and non-C4 homologous genes of PPDK and PCK in maize

    No full text
    More efficient photosynthesis has allowed C-4 plants to adapt to more diverse ecosystems (such as hot and arid conditions) than C-3 plants. To better understand C-4 photosynthesis, we investigated the expression patterns of C-4 genes (C4PPDK and PCK1) and their non-C-4 homologous genes (CyPPDK1, CyPPDK2, and PCK2) in the different organs of maize (Zea mays). Both C-4 genes and non-C-4 genes showed organ-dependent expression patterns. The mRNA levels of C-4 genes were more abundant in leaf organ than in seeds at 25 days after pollination (DAP), while non-C-4 genes were mainly expressed in developing seeds. Further, acetylation of histone H3 lysine 9 (H3K9ac) positively correlates with mRNA levels of C-4 genes (C4PPDK and PCK1) in roots, stems, leaves, and seeds at 25 DAP, acetylation of histone H4 lysine 5 (H4K5ac) in the promoter regions of both C-4 (C4PPDK and PCK1) and non-C-4 genes (CyPPDK1, CyPPDK2, and PCK2) correlated well with their transcripts abundance in stems. In photosynthetic organs (stems and leaves), dimethylation of histone H3 lysine 9 (H3K9me2) negatively correlated with mRNA levels of both C-4 and non-C-4 genes. Taken together, our data suggest that histone modification was involved in the transcription regulation of both C-4 genes and non-C-4 genes, which might provide a clue of the functional evolution of C-4 genes

    Phylogenic and phosphorylation regulation difference of phosphoenolpyruvate carboxykinase of C3 and C4 plants

    No full text
    In C4 plants, phosphoenolpyruvate carboxykinase (PEPCK) plays a key role in the C4 cycle. PEPCK is also involved in gluconeogenesis and is conserved in both lower and higher organisms, including in animals and plants. A phylogenic tree constructed from PEPCK sequences from bacteria to higher plants indicates that the C4 Poaceae PEPCKs are conserved and have diverged from the PEPCKs of C3 plants. The maximum enzymatic activities of wild-type and phosphorylation mimic PEPCK proteins indicate that there is a significant difference between C3 and C4 plant PEPCKs. The conserved PEPCK phosphorylation sites are regulated differently in C3 and C4 plants. These results suggest that the functions of PEPCK have been conserved, but that sequences have diverged and regulation of PEPCK is important in C4 plants, but not in herbaceous and, in particular, woody C3 plants. (C) 2017 Elsevier GmbH. All rights reserved

    Phylogenic and phosphorylation regulation difference of phosphoenolpyruvate carboxykinase of C3 and C4 plants

    No full text
    In C4 plants, phosphoenolpyruvate carboxykinase (PEPCK) plays a key role in the C4 cycle. PEPCK is also involved in gluconeogenesis and is conserved in both lower and higher organisms, including in animals and plants. A phylogenic tree constructed from PEPCK sequences from bacteria to higher plants indicates that the C4 Poaceae PEPCKs are conserved and have diverged from the PEPCKs of C3 plants. The maximum enzymatic activities of wild-type and phosphorylation mimic PEPCK proteins indicate that there is a significant difference between C3 and C4 plant PEPCKs. The conserved PEPCK phosphorylation sites are regulated differently in C3 and C4 plants. These results suggest that the functions of PEPCK have been conserved, but that sequences have diverged and regulation of PEPCK is important in C4 plants, but not in herbaceous and, in particular, woody C3 plants. (C) 2017 Elsevier GmbH. All rights reserved

    Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C-4 Photosynthetic Enzyme Genes

    No full text
    Histone modifications play important roles in regulating the expression of C-4 photosynthetic genes. Given that all enzymes required for the C-4 photosynthesis pathway are present in C-3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C-4 photosynthetic enzyme genes has not been well determined in C-3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii x Populus nigra) homologs of maize (Zea mays) C-4 photosynthetic enzyme genes, carbonic anhydrase (CA), pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxykinase (PCK), and phosphoenolpyruvate carboxylase (PEPC), and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C-4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac) determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissuedependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C-3 and C-4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C-4 genes to engineer C-4 plants from C3 plants

    Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    No full text
    Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra) homologs of maize (Zea mays) C4 photosynthetic enzyme genes, carbonic anhydrase (CA), pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxykinase (PCK), and phosphoenolpyruvate carboxylase (PEPC), and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac) determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants

    Activation of the ERK1/2 Signaling Pathway during the Osteogenic Differentiation of Mesenchymal Stem Cells Cultured on Substrates Modified with Various Chemical Groups

    Get PDF
    The current study examined the influence of culture substrates modified with the functional groups –OH, –COOH, –NH2, and –CH3 using SAMs technology, in conjunction with TAAB control, on the osteogenic differentiation of rabbit BMSCs. The CCK-8 assay revealed that BMSCs exhibited substrate-dependent cell viability. The cells plated on –NH2- and –OH-modified substrates were well spread and homogeneous, but those on the –COOH- and –CH3-modified substrates showed more rounded phenotype. The mRNA expression of BMSCs revealed that –NH2-modified substrate promoted the mRNA expression and osteogenic differentiation of the BMSCs. The contribution of ERK1/2 signaling pathway to the osteogenic differentiation of BMSCs cultured on the –NH2-modified substrate was investigated in vitro. The –NH2-modified substrate promoted the expression of integrins; the activation of FAK and ERK1/2. Inhibition of ERK1/2 activation by PD98059, a specific inhibitor of the ERK signaling pathway, blocked ERK1/2 activation in a dose-dependent manner, as revealed for expression of Cbfα-1 and ALP. Blockade of ERK1/2 phosphorylation in BMSCs by PD98059 suppressed osteogenic differentiation on chemical surfaces. These findings indicate a potential role for ERK in the osteogenic differentiation of BMSCs on surfaces modified by specific chemical functional groups, indicating that the microenvironment affects the differentiation of BMSCs. This observation has important implications for bone tissue engineering
    corecore