2,166 research outputs found

    Natural characteristics analysis of aircraft wing box based on finite element method and measured data

    Get PDF
    Compared with other mechanical products, aircraft structures have more rigorous requirements on flying performance, safety, reliability and service life. Based on the finite element method (FEM), the key component of the wing box model is explored in this paper, which provides a reference for the structure design and manufacture of aircraft wing box. The three-dimensional point cloud data of components are obtained by optical measurement systems, the deviation analysis between the point cloud model and the nominal model is carried out as a prerequisite, and then the natural characteristics of the model is analyzed. The results show that 99.15 % of the measured points have deviations within 0.38 mm, which verifies the accuracy of the nominal model. The first six modes are all bending modal shape, and the larger amplitude region mainly occurs in the wing ribs, which means its bending strength should be improved for structure design. Besides, the sixth-mode simultaneously result in front spar, stringer and rib bending vibration

    Stochastic process design kits for photonic circuits based on polynomial chaos augmented macro-modelling

    Get PDF
    Fabrication tolerances can significantly degrade the performance of fabricated photonic circuits and process yield. It is essential to include these stochastic uncertainties in the design phase in order to predict the statistical behaviour of a device before the final fabrication. This paper presents a method to build a novel class of stochastic-based building blocks for the preparation of Process Design Kits for the analysis and design of photonic circuits. The proposed design kits directly store the information on the stochastic behaviour of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using these macro-models, only a single deterministic simulation is required to compute the stochastic moments of any arbitrary photonic circuit, without the need of running a large number of time-consuming circuit simulations thereby dramatically improving simulation efficiency. The effectiveness of the proposed approach is verified by means of classical photonic circuit examples with multiple uncertain variables

    A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria

    Get PDF
    Predator-prey interactions play important roles in the cycling of marine organic matter. Here we show that a Gram-negative bacterium isolated from marine sediments (Pseudoalteromonas sp. strain CF6-2) can kill Gram-positive bacteria of diverse peptidoglycan (PG) chemotypes by secreting the metalloprotease pseudoalterin. Secretion of the enzyme requires a Type II secretion system. Pseudoalterin binds to the glycan strands of Gram positive bacterial PG and degrades the PG peptide chains, leading to cell death. The released nutrients, including PG-derived D-amino acids, can then be utilized by strain CF6-2 for growth. Pseudoalterin synthesis is induced by PG degradation products such as glycine and glycine-rich oligopeptides. Genes encoding putative pseudoalterin-like proteins are found in many other marine bacteria. This study reveals a new microbial interaction in the ocean
    • …
    corecore