7 research outputs found

    GrandBase: generating actionable knowledge from Big Data

    No full text
    Purpose – This paper aims to propose a system for generating actionable knowledge from Big Data and use this system to construct a comprehensive knowledge base (KB), called GrandBase. Design/methodology/approach – In particular, this study extracts new predicates from four types of data sources, namely, Web texts, Document Object Model (DOM) trees, existing KBs and query stream to augment the ontology of the existing KB (i.e. Freebase). In addition, a graph-based approach to conduct better truth discovery for multi-valued predicates is also proposed. Findings – Empirical studies demonstrate the effectiveness of the approaches presented in this study and the potential of GrandBase. The future research directions regarding GrandBase construction and extension has also been discussed. Originality/value – To revolutionize our modern society by using the wisdom of Big Data, considerable KBs have been constructed to feed the massive knowledge-driven applications with Resource Description Framework triples. The important challenges for KB construction include extracting information from large-scale, possibly conflicting and different-structured data sources (i.e. the knowledge extraction problem) and reconciling the conflicts that reside in the sources (i.e. the truth discovery problem). Tremendous research efforts have been contributed on both problems. However, the existing KBs are far from being comprehensive and accurate: first, existing knowledge extraction systems retrieve data from limited types of Web sources; second, existing truth discovery approaches commonly assume each predicate has only one true value. In this paper, the focus is on the problem of generating actionable knowledge from Big Data. A system is proposed, which consists of two phases, namely, knowledge extraction and truth discovery, to construct a broader KB, called GrandBase

    An integrated Bayesian approach for effective multi-truth discovery

    No full text
    Truth-finding is the fundamental technique for corroborating reports from multiple sources in both data integration and collective intelligent applications. Traditional truth-finding methods assume a single true value for each data item and therefore cannot deal will multiple true values (i.e., the multi-truth-finding problem). So far, the existing approaches handle the multi-truth-finding problem in the same way as the single-truth-finding problems. Unfortunately, the multi-truth-finding problem has its unique features, such as the involvement of sets of values in claims, different implications of inter-value mutual exclusion, and larger source profiles. Considering these features could provide new opportunities for obtaining more accurate truth-finding results. Based on this insight, we propose an integrated Bayesian approach to the multi-truth-finding problem, by taking these features into account. To improve the truth-finding efficiency, we reformulate the multi-truth-finding problem model based on the mappings between sources and (sets of) values. New mutual exclusive relations are defined to reflect the possible co-existence of multiple true values. A finer-grained copy detection method is also proposed to deal with sources with large profiles. The experimental results on three real-world datasets show the effectiveness of our approach

    Approximate truth discovery via problem scale reduction

    No full text
    Many real-world applications rely on multiple data sources to provide information on their interested items. Due to the noises and uncertainty in data, given a specific item, the information from different sources may conflict. To make reliable decisions based on these data, it is important to identify the trustworthy information by resolving these conflicts, i.e., the truth discovery problem. Current solutions to this problem detect the veracity of each value jointly with the reliability of each source for each data item. In this way, the efficiency of truth discovery is strictly confined by the problem scale, which in turn limits truth discovery algorithms from being applicable on a large scale. To address this issue, we propose an approximate truth discovery approach, which divides sources and values into groups according to a user-specified approximation criterion. The groups are then used for efficient inter-value influence computation to improve the accuracy. Our approach is applicable to most existing truth discovery algorithms. Experiments on real-world datasets show that our approach improves the efficiency compared to existing algorithms while achieving similar or even better accuracy. The scalability is further demonstrated by experiments on large synthetic datasets

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore