
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

11-2017

SourceVote: Fusing multi-valued data via inter-
source agreements
Xiu Susie FANG

Quan Z. SHENG

Xianzhi WANG
Singapore Management University, xzwang@smu.edu.sg

Mahmoud BARHAMGI

Lina YAO

See next page for additional authors

DOI: https://doi.org/10.1007/978-3-319-69904-2_13

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Data Storage Systems

Commons

This Conference Paper is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
FANG, Xiu Susie; SHENG, Quan Z.; WANG, Xianzhi; BARHAMGI, Mahmoud; YAO, Lina; and NGU, Anne H.H.. SourceVote:
Fusing multi-valued data via inter-source agreements. (2017). 36th International Conference on Conceptual Modeling , Valencia, Spain,
2017 November 6-9. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/3857

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/132698527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/978-3-319-69904-2_13
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg


Author
Xiu Susie FANG, Quan Z. SHENG, Xianzhi WANG, Mahmoud BARHAMGI, Lina YAO, and Anne H.H.
NGU

This conference paper is available at Institutional Knowledge at Singapore Management University: https://ink.library.smu.edu.sg/
sis_research/3857

https://ink.library.smu.edu.sg/sis_research/3857?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research/3857?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F3857&utm_medium=PDF&utm_campaign=PDFCoverPages


SourceVote: Fusing Multi-valued Data via
Inter-source Agreements

Xiu Susie Fang1(B), Quan Z. Sheng1, Xianzhi Wang2, Mahmoud Barhamgi3,
Lina Yao4, and Anne H.H. Ngu5

1 Department of Computing, Macquarie University, Sydney, Australia
xiu.fang@students.mq.edu.au, michael.sheng@mq.edu.au

2 School of Information Systems, Singapore Management University,
Singapore, Singapore

sandyawang@gmail.com
3 LIRIS Laboratory, Claude Bernard Lyon1 University, Villeurbanne, France

mahmoud.barhamgi@liris.cnrs.fr
4 School of Computer Science and Engineering, UNSW, Sydney, Australia

lina.yao@unsw.edu.au
5 Department of Computer Science, Texas State University, San Marcos, USA

angu@txstate.edu

Abstract. Data fusion is a fundamental research problem of identify-
ing true values of data items of interest from conflicting multi-sourced
data. Although considerable research efforts have been conducted on this
topic, existing approaches generally assume every data item has exactly
one true value, which fails to reflect the real world where data items with
multiple true values widely exist. In this paper, we propose a novel app-
roach, SourceVote, to estimate value veracity for multi-valued data items.
SourceVote models the endorsement relations among sources by quantify-
ing their two-sided inter-source agreements. In particular, two graphs are
constructed to model inter-source relations. Then two aspects of source
reliability are derived from these graphs and are used for estimating
value veracity and initializing existing data fusion methods. Empirical
studies on two large real-world datasets demonstrate the effectiveness of
our approach.

Keywords: Data integration · Data fusion · Multi-valued data items ·
Inter-source agreements

1 Introduction

Last few years have witnessed a sheer amount of data produced and commu-
nicated among numerous sources over the Web. Unfortunately, these sources
possess varying qualities and in many cases provide conflicting information on
the same data items. This poses great challenges to data integration research on
discovering true values from multi-sourced data, or the data fusion problem [7].
Considerable research efforts have been conducted to resolve this issue [8]. How-
ever, most of them assume that every data item has exactly one true value, i.e.,
c© Springer International Publishing AG 2017
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single-valued assumption. This assumption fails to reflect the reality where many
data items have multiple true values [15], e.g., the authors of a book. Given a
data item, although we can simply concatenate and regard the values provided
by the same source as a single joint value, like what previous methods do, the
sets of values provided by different sources may overlap and implicitly support
one another, making the concatenation unreasonable. For example, a source may
claim “Charlie Booty, Lily James, Tim Roth” while another source may claim
“Charlie Booty, Lily James” as the cast of the film “Broken”. Apparently, the
latter set is covered by the former set and therefore partially supports the former
set. Since neglecting this hint may greatly impair the data fusion accuracy on
multi-valued data items, we define and conduct focused study on a new topic
called the multi-valued data fusion problem.

To the best of our knowledge, few research efforts have been devoted to the
multi-valued issue in the field of truth discovery. We identify the challenges of
multi-valued data fusion and the disadvantages of existing approaches as follows.
Firstly, all existing methods require initializing source reliability, and for many
of them, source reliability initialization impacts their performance in terms of
convergence rate and accuracy. Secondly, there are implicit endorsement rela-
tions among sources when they provide some values in common. Intuitively, a
source endorsed by more sources is regarded more authoritative and its pro-
vided values can be more trusted. Unlike other widely studied source relations
such as copying relations, endorsement relations among sources are neglected by
the previous work. Thirdly, sources may exhibit different behavioral features on
multi-valued data items: some sources may provide erroneous values, leading to
false positives, while some other sources may provide partial true values with-
out making mistakes, leading to false negatives. While these two types of errors
are equivalent for single-valued data items, for multi-valued data items, differ-
entiating these errors is crucial for identifying the complete true value set. In a
nutshell, our work makes three main contributions: (i) we propose a graph-based
model, called SourceVote, as a solution to the multi-valued data fusion problem.
It uses two graphs, i.e., ±Agreement Graph, to model the two-sided endorse-
ment relations among sources. Random walk computations are applied on both
graphs to derive two-sided vote counts of sources and to finally estimate value
veracity; (ii) we further derive two-sided source reliability from the two graphs to
better estimate sources’ quality and initialize existing data fusion methods; (iii)
we conduct extensive experiments on two large real-world datasets. The results
show that SourceVote consistently outperforms the baselines.

2 Related Work

Except uniformly initializing source reliability as 0.8 [10], most previous work
helps data fusion methods to initialize source reliability based on prior knowl-
edge, which is obtained by either semi-supervised methods [2] or leveraging an
external trustful information source [3]. In comparison, our approach automati-
cally derives source reliability by capturing source endorsement relations without
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using any prior knowledge. The Web-link based data fusion methods [6,9] are
the closest to our method. They compute the trustworthiness of sources and the
truthfulness of values by using PageRank, where each link between a source and
a value represents the source provides that value. However, they make single-
valued assumption. To the best of our knowledge, multi-valued data fusion is
rarely studied by the previous work. LTM (Latent Truth Model) [15] and the
method proposed by Wang et al. [13] are two probabilistic models that take
multi-valued objects into consideration. Waguih and Berti-Equille [10] conclude
with extensive experiments that this type of models make strong assumptions
on the prior distributions of latent variables, which render the modeled problem
intractable and inhibitive to incorporating various considerations, and cannot
scale well. Wang et al. [11] analyze the unique features of MTD and propose an
MBM (Multi-truth Bayesian Model). However, they make strong assumptions on
the copying of false information among sources and the independent provisioning
of correct information by sources. It also requires initialization of several parame-
ters including source reliability and copy probabilities of copiers. Recently, Wang
et al. [12] design three models for enhancing existing truth discovery methods.
Their experiments show that those models are effective in improving the accu-
racy of multi-truth discovery using existing truth discovery methods. However,
LTM and MBM still performed better than those enhanced methods. None of the
above methods takes the endorsement relations among sources into considera-
tion. Different from them, our approach assumes no prior distribution or source
dependency and requires no initialization of source reliability. Therefore, it is
robust to various problem scenarios and insensitive to initial parameters.

3 The SourceVote Approach

The multi-valued data fusion problem involves three explicit inputs: (i) a set of
multi-valued data items, denoted as O. Each o ∈ O may have multiple true values;
(ii) a set of data sources, denoted as S. Each s ∈ S provides potential values
on a subset of O; (iii) claimed values, denoted as V . Each v ∈ V represents
a value claimed by a source on a data item. Given a data item o, we denote
the set of sources that provide values on it as So, and the set of all claimed
values on it as Vo. In addition, we can derive several implicit inputs from the
explicit inputs. Suppose the source s provides some specific values on item o
(i.e., positive claims), denoted as Vso

+. By incorporating the mutual exclusion
assumption, we believe s at the same time disclaims all the other values of o
(i.e., negative claims), denoted as Vso

−, satisfying Vo − Vso
+.

To differentiate false positives and false negatives made by sources and to
model source quality more precisely in multi-valued scenarios, our model focuses
on two aspects of source reliability: positive (resp., negative) precision, the prob-
ability of the positive (resp., negative) claims of a source being true (resp., false).
Note that the truth and source reliability are closely related. We formally define
the multi-valued data fusion problem as follows:
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Definition 1. Multi-Valued Data Fusion Problem. Given a set of data
items (O) and the conflicting values (V ) claimed by a set of sources (S), the goal
is to identify a set of true values (Vo

∗) from V for each data item o, satisfying
that Vo

∗ is as close to the ground truth as possible. �

For multi-valued data items, sources may provide the same, overlapping, or
totally different sets of values from one another. Generally, values agreed by
the majority of sources are more trustworthy. Therefore, if the positive claims of
a source are agreed by the majority of other sources, this source is likely to have
high positive precision; likewise, if the negative claims of a source are disclaimed
by the majority of sources, this source would be of high negative precision. That
means the agreements among sources indicate endorsement, which further moti-
vates us to model the quality of a source by quantifying the agreements and
endorsement relations among data sources.

Given a data item o, we formally define the common values claimed by two
sources as inter-source agreement. We consider two-sided inter-source agree-
ments based on mutual exclusion. In particular, +agreement, the agreement
between two sources (e.g., s1 and s2) on their positive claims of o, (denoted by
Ao

+(s1, s2)) is calculated as:

Ao
+(s1, s2) = Vs1o

+ ∩ Vs2o

+ (1)

Similarly, –agreement, the agreement between two sources on their negative
claims of o (denoted by Ao

−(s1, s2)) is calculated as:

Ao
−(s1, s2) = Vs1o

− ∩ Vs2o

− = Vo − (Vs1o

+ ∪ Vs2o

+) (2)

The positive (resp., negative) precision of a source is endorsed by the +agreement
(resp., –agreement) between this source and the other sources.

In this section, we present a graph-based approach, called SourceVote, as a
solution to multi-valued data fusion, which is a two-step process: (i) creating two
graphs based on agreements among sources (Sect. 3.1), and (ii) assessing two-
sided source quality based on the graphs and further use the assessment results
to estimate value veracity or initialize data fusion methods (Sect. 3.2).

3.1 Creating Agreement Graphs

By quantifying the two-sided inter-source agreements, we can construct two
fully connected weighted graphs, namely ±agreement graphs. In each graph,
vertices represent sources, each directed edge depicts that one source agrees
with/endorses another source, and the weight on each edge denotes the endorse-
ment degree between the two sources. In particular, +agreement (resp., –
agreement) graph models the +agreement (resp., –agreement) among the
sources.

To construct the +agreement graph, we first formalize the endorsement from
one source to another (e.g., s1 → s2) on their positive claims. Specifically, for
each data item that they both cover, we calculate the endorsement based on the
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+agreement between the two sources. Then, we sum up the endorsement on all
their overlapping data items as follows,

E+(s1, s2) =
∑

o∈Os1∩Os2

|Ao
+(s1, s2)|
|Vs2o

+| (3)

where Os denotes the set of data items covered by s. Then, we calculate the
weight on the edge from s1 to s2 as:

W+(s1 → s2) = β + (1 − β) · E+(s1, s2)
|Os1 ∩ Os2 |

(4)

In Eq. (4), we add a “smoothing link” with a small weight between every
pair of vertices, where β is the smoothing factor to guarantee the graph’s full
connectivity and the convergence of random walk computations. For our exper-
iments, we simply set β = 0.1 (empirical studies [5] show this setting generally
yields more accurate estimation). Finally, we normalize the weights of all out-
going links of each vertex by dividing each weight by the sum of weights on all
out-going links from this vertex. This normalization allows us to interpret the
edge weights as the transition probabilities in random walk computations. We
construct the –agreement graph in a similar way.

3.2 Estimating Value Veracity and Source Reliability

To derive two-sided source reliability (positive and negative precision) from the
two graphs, the measurements should capture two features: (i) vertices with more
input edges are assigned higher precision because those sources are endorsed by
a large number of sources and should be more trustworthy1; (ii) endorsement
from a source with more input edges should be more trusted because both the
authoritative sources and the sources endorsed by authoritative sources are more
likely to be trustworthy. We adopt Fixed Point Computation Model (FPC) to
capture the transitive propagation of source trustworthiness through agreement
links based on the ±agreement graphs [1].

By applying FPC, we obtain the ranking scores of the two-sided precision
of each source among all the sources. Specifically, we refer to each agreement
graph as a Markov chain, where vertices serve as the states and the weights on
edges as transition probabilities between the states. We calculate the asymptotic
stationary visiting probabilities of the Markov random walk, where for each
graph, all visiting probabilities sum up to 1. Although, in this way, the visiting
probabilities may not reflect the sources’ real positive and negative precision,
such feature renders the visiting probabilities of each source in the two graphs
comparable. For this reason, we can count the visiting probability of each source
in the +agreement (resp., –agreement) graph as the vote for its positive (resp.,
negative) claims being true (resp., false). We denote the corresponding vote count
1 Here we neglect the smoothing links, i.e., no link would be there between two sources

in the graphs if no common value exists between the two sources.
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of each source as V+(s) (resp., V−(s)) and further estimate the veracity of each
claimed value as follows:

V eracity(v) =

{
True; if

∑
s∈Sv

+ V+(s) > α · ∑
s∈Sv

− V−(s)
False; otherwise

(5)

where α is the source confidence factor, Sv
+ (resp., Sv

−) represents the set of
sources that claim (resp., disclaim) v regarding o. Given a single-valued data
item, if a source claims a value, the source certainly disclaims all the other
potential values. However, sources may not know the number of true values
on the data items and thus do not necessarily reject negative claims on multi-
valued data items. Therefore, we adopt a new mutual exclusion definition [11] and
further add a source confidence factor, α ∈ (0, 1), to differentiate the confidence
of each source on its positive claims and negative claims.

To further quantify the two-sided source reliability based on the calculated
visiting probabilities, we apply a two-step normalization process: (i) given the
source which has the highest visiting probability in the +agreement graph (resp.,
–agreement graph), we first manually evaluate the positive precision (resp., neg-
ative precision) of the source, and then divide the evaluated positive precision
(resp., negative precision) by the visiting probability to derive the normalization
rate; (ii) normalizing the visiting probabilities of all sources as positive precision
or negative precision, by multiplying the corresponding normalization rates.

Note that most existing methods start with initializing source reliability as
a default value, e.g., set source reliability as 0.8 [10]. Such initialization may
fundamentally impact the convergence rate and precision of methods. According
to Li et al. [7], “knowing the precise trustworthiness of sources can fix nearly half
of the mistakes in the best fusion results”. As constructing and computing our
agreement graphs can be easily realized and require no initialization of source
reliability, our approach can be applied to existing methods for more precise
source reliability initialization.

4 Experiments

We used two real-world datasets, including the Parent-Children Dataset [9] and
the Book-Author Dataset [14]. To compare our method with traditional data
fusion algorithms, we investigated the existing approaches that can be modified
to tackle the multi-valued data fusion problem. As a result, we identified six
methods as baselines: Voting, Sums (Hubs and Authorities) [6], Average-Log [9],
TruthFinder [14], 2-Estimates [4], LTM [15], and MBM [11].

4.1 Comparison of Data Fusion Methods

Table 1 shows the performance of different approaches on the two datasets. The
results show that our approach consistently achieved the best recall and F1 score
among the methods. Compared with the two existing multi-valued data fusion
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Table 1. Comparison of different methods: the best and second best performance
values are in bold.

Method Book-Author dataset Parent-Children dataset

Precision Recall F1 score Time(s) Precision Recall F1 score Time(s)

Voting 0.84 0.63 0.72 0.07 0.90 0.74 0.81 0.56

Sums 0.84 0.64 0.73 0.85 0.90 0.88 0.89 1.13

Avg-Log 0.83 0.60 0.70 0.61 0.90 0.88 0.89 0.75

TruthFinder 0.84 0.60 0.70 0.74 0.90 0.88 0.89 1.24

2-Estimates 0.81 0.70 0.75 0.38 0.91 0.88 0.89 1.34

LTM 0.82 0.65 0.73 0.98 0.88 0.90 0.89 0.99

MBM 0.83 0.74 0.78 0.67 0.91 0.89 0.90 2.17

SourceVote 0.81 0.77 0.79 0.63 0.90 0.92 0.91 0.91

methods (LTM and MBM), SourceVote had the lowest execution time. This
is because LTM conducted complicated Bayesian inference over a probabilistic
graphical model, and MBM includes time-consuming copy detection. Moreover,
Both LTM and MBM are iterative approaches; in contrast, our approach is based
on a simpler graph-based model. Although our approach achieved no significantly
superior precision, the recall was improved drastically. For F1 score, SourceVote
consistently achieved the highest values for both datasets. The results reveal
that our approach performs the best overall among all these baseline methods,
which is consistent with our expectation because it makes no prior assumption
and considers the endorsement relations among sources by combining with the
graph-based method.

4.2 Empirical Studies of Different Concerns

We conducted experiments on the aforementioned baselines2, to validate the fea-
sibility of modeling source reliability by quantifying two-sided inter-source agree-
ments and the feasibility of using SourceVote to initialize the existing data fusion
methods. Figure 1(a) describes the performance comparison of the SourceVote
initialized methods with their original versions on the Book-Author dataset. The
results show that initializing source reliability by applying SourceVote almost led
to better performance of all methods, indicated by higher precision and recall,
and lower execution time. This reflects that the source reliability evaluated by
SourceVote is more accurate than the widely applied default value of 0.8. With
precise initialization, all methods achieved faster convergence speed. We also
investigated the performance of SourceVote by tuning the values of the source
confidence factor α from 0 to 1 on both datasets. Figure 1(b) shows the impact
of α on the performance of SourceVote on the Book-Author dataset. The overall

2 Note that we did not apply SourceVote to Voting, because Voting assumes all sources
are equally reliable.
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(a) (b)

Fig. 1. (a) Comparison between the original versions of representative existing data
fusion methods and the versions that apply SourceVote for precise source reliability ini-
tialization. The latter versions are marked by suffix “-s”. (b) Performance of SourceVote
under varying source confidence factor, i.e., α.

performance of SourceVote peaked at the point of α = 0.6 with an F1 score
of 0.79, which is consistent with our intuition that source confidence on posi-
tive claims should be more respected. For α ∈ [0.3, 0.9], the lowest F1 score of
SourceVote is 0.76, which is still higher than the other baseline methods. The
experimental results on Parent-Children dataset showed the similar results.

5 Conclusion

In this paper, we have proposed a novel approach, SourceVote, to address the
multi-valued data fusion problem. Our approach models the endorsement rela-
tions among sources by quantifying the agreements among sources on their pos-
itive and negative claims. Two aspects of sources reliability are derived from the
modelled relations. Due to the compact feature of SourceVote, it can be lever-
aged to initialize and improve the existing data fusion methods. Experimental
results on two large real-world datasets show that our approach outperforms the
state-of-the-art data fusion methods.
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