1,269 research outputs found

    1-Benzoyl-3,6-diphenyl-1,4-dihydro-1,2,4,5-tetra­zine

    Get PDF
    In the title compound, C21H16N4O, the central tetra­zine ring adopts an unsymmetrical boat conformation with the two N atoms as the bow and stern. The crystal packing is stabilized by inter­molecular N—H—O hydrogen bonds

    STGC3 inhibits xenograft tumor growth of nasopharyngeal carcinoma cells by altering the expression of proteins associated with apoptosis

    Get PDF
    STGC3 is a potential tumor suppressor that inhibits the growth of the nasopharyngeal carcinoma cell line CNE2; the expression of this protein is reduced in nasopharyngeal carcinoma compared with normal nasopharyngeal tissue. In this study, we investigated the tumor-suppressing activity of STGC3 in nude mice injected subcutaneously with Tet/pTRE-STGC3/CNE2 cells. STGC3 expression was induced by the intraperitoneal injection of doxycycline (Dox). The volume mean of Tet/pTRE-STGC3/CNE2+Dox xenografts was smaller than that of Tet/pTRE/CNE2+Dox xenografts. In addition, Tet/pTRE-STGC3/CNE2+Dox xenografts showed an increase in the percentage of apoptotic cells, a decrease in Bcl-2 protein expression and an increase in Bax protein expression. A proteomic approach was used to assess the protein expression profile associated with STGC3-mediated apoptosis. Western blotting confirmed the differential up-regulation of prohibitin seen in proteomic analysis. These results indicate that overexpression of STGC3 inhibits xenograft growth in nude mice by enhancing apoptotic cell death through altered expression of apoptosis-related proteins such as Bcl-2, Bax and prohibitin. These data contribute to our understanding of the function of STGC3 in human nasopharyngeal carcinoma and provide new clues for investigating other STGC3-associated tumors

    New sesquiterpene and other constituents from Senecio flammeus

    Get PDF
    607-60

    1-(4-Methyl-1-naphth­yl)ethanone

    Get PDF
    In the mol­ecule of the title compound, C13H12O, the two aromatic rings are oriented at a dihedral angle of 2.90 (3)°. An intra­molecular C—H⋯O hydrogen bond results in the formation of a non-planar six-membered ring, which adopts an envelope conformation. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules

    A quantitative RT-PCR assay for rapid detection of Eurasianlineage H10 subtype influenza A virus

    Get PDF
    Influenza A viruses (IAVs) are single-stranded, negative sense RNA viruses. IAV subtype is determined on the basis of the viral surface glycoproteins, hemagglutinin (HA), and neuraminidase (NA). To date, 18 HA and 11 NA subtypes have been reported (Tong et al., 2012). IAVs can cause sporadic infections, local epidemics, and global pandemics among humans. In addition to humans, IAVs can naturally infect avian, swine, equines, canines, and sea mammals (Webster et al., 1992). Migratory waterfowl are the natural reservoir for IAVs, and the avianorigin IAVs play an important role in influenza ecology and have been involved in generation of the IAVs infection in humans. At least one or more genetic segments of all four known pandemic strains are of avian origin, and these avian-origin genes reassorted with those IAVs from domestic animals to generate pandemic viruses. For example, the HA genes (major antigenic determinants) of 1918, 1957, and 1968 pandemic viruses are all of avianorigin (Webster et al., 1997); the 2009 H1N1 pandemic virus has avian-origin PB2 and PA genes (Shinde et al., 2009). Besides pandemic viruses, in the past decades, there have also been a number of reported human infections with avian IAVs, including subtypes H5N1, H6N1, H7N2, H7N3, H7N7, H9N2, H10N7 and H7N9. Thus, monitoring the evolution of avian IAVs and rapidly detecting these viruses in human are important components of influenza surveillance and pandemic preparedness

    A quantitative RT-PCR assay for rapid detection of Eurasianlineage H10 subtype influenza A virus

    Get PDF
    Influenza A viruses (IAVs) are single-stranded, negative sense RNA viruses. IAV subtype is determined on the basis of the viral surface glycoproteins, hemagglutinin (HA), and neuraminidase (NA). To date, 18 HA and 11 NA subtypes have been reported (Tong et al., 2012). IAVs can cause sporadic infections, local epidemics, and global pandemics among humans. In addition to humans, IAVs can naturally infect avian, swine, equines, canines, and sea mammals (Webster et al., 1992). Migratory waterfowl are the natural reservoir for IAVs, and the avianorigin IAVs play an important role in influenza ecology and have been involved in generation of the IAVs infection in humans. At least one or more genetic segments of all four known pandemic strains are of avian origin, and these avian-origin genes reassorted with those IAVs from domestic animals to generate pandemic viruses. For example, the HA genes (major antigenic determinants) of 1918, 1957, and 1968 pandemic viruses are all of avianorigin (Webster et al., 1997); the 2009 H1N1 pandemic virus has avian-origin PB2 and PA genes (Shinde et al., 2009). Besides pandemic viruses, in the past decades, there have also been a number of reported human infections with avian IAVs, including subtypes H5N1, H6N1, H7N2, H7N3, H7N7, H9N2, H10N7 and H7N9. Thus, monitoring the evolution of avian IAVs and rapidly detecting these viruses in human are important components of influenza surveillance and pandemic preparedness

    A quantitative RT-PCR assay for rapid detection of Eurasianlineage H10 subtype influenza A virus

    Get PDF
    Influenza A viruses (IAVs) are single-stranded, negative sense RNA viruses. IAV subtype is determined on the basis of the viral surface glycoproteins, hemagglutinin (HA), and neuraminidase (NA). To date, 18 HA and 11 NA subtypes have been reported (Tong et al., 2012). IAVs can cause sporadic infections, local epidemics, and global pandemics among humans. In addition to humans, IAVs can naturally infect avian, swine, equines, canines, and sea mammals (Webster et al., 1992). Migratory waterfowl are the natural reservoir for IAVs, and the avianorigin IAVs play an important role in influenza ecology and have been involved in generation of the IAVs infection in humans. At least one or more genetic segments of all four known pandemic strains are of avian origin, and these avian-origin genes reassorted with those IAVs from domestic animals to generate pandemic viruses. For example, the HA genes (major antigenic determinants) of 1918, 1957, and 1968 pandemic viruses are all of avianorigin (Webster et al., 1997); the 2009 H1N1 pandemic virus has avian-origin PB2 and PA genes (Shinde et al., 2009). Besides pandemic viruses, in the past decades, there have also been a number of reported human infections with avian IAVs, including subtypes H5N1, H6N1, H7N2, H7N3, H7N7, H9N2, H10N7 and H7N9. Thus, monitoring the evolution of avian IAVs and rapidly detecting these viruses in human are important components of influenza surveillance and pandemic preparedness
    corecore