82 research outputs found

    Testing the effect of individual scent compounds on pollinator attraction in nature using quasi-isogenic Capsella lines

    Get PDF
    Premise Floral scent, usually consisting of multiple compounds, is a complex trait, and its role in pollinator attraction has received increasing attention. However, disentangling the effect of individual floral scent compounds is difficult due to the complexity of isolating the effect of single compounds by traditional methods. Methods Using available quasi-isogenic lines (qILs) that were generated as part of the original mapping of the floral scent volatile-related loci CNL1 (benzaldehyde) and TPS2 (β-ocimene) in Capsella, we generated four genotypes that should only differ in these two compounds. Plants of the four genotypes were introduced into a common garden outside the natural range of C. rubella or C. grandiflora, with individuals of a self-compatible C. grandiflora line as pollen donors, whose different genetic background facilitates the detection of outcrossing events. Visitors to flowers of all five genotypes were compared, and the seeds set during the common-garden period were collected for high-throughput amplicon-based sequencing to estimate their outcrossing rates. Results Benzaldehyde and β-ocimene emissions were detected in the floral scent of corresponding genotypes. While some pollinator groups showed specific visitation preferences depending on scent compounds, the outcrossing rates in seeds did not vary among the four scent-manipulated genotypes. Conclusions The scent-manipulated Capsella materials constructed using qILs provide a powerful system to study the ecological effects of individual floral scent compounds under largely natural environments. In Capsella, individual benzaldehyde and β-ocimene emission may act as attractants for different types of pollinators

    Comparison of curative effect between OBS assisted by 3D printing and PFNA in the treatment of AO/OTA type 31-A3 femoral intertrochanteric fractures in elderly patients

    Get PDF
    ObjectiveTo compare and analyze the Ortho-Bridge System (OBS) clinical efficacy assisted by 3D printing and proximal femoral nail anti-rotation (PFNA) of AO/OTA type 31-A3 femoral intertrochanteric fractures in elderly patients.MethodsA retrospective analysis of 25 elderly patients diagnosed with AO/OTA type 31-A3 femoral intertrochanteric fracture was conducted from January 2020 to August 2022 at Yan’an Hospital, affiliated to Kunming Medical University. The patients were divided into 10 patients in the OBS group and 15 in the PFNA group according to different surgical methods. The OBS group reconstructed the bone models and designed the guide plate by computer before the operation, imported the data of the guide plate and bone models into a stereolithography apparatus (SLA) 3D printer, and printed them using photosensitive resin, thus obtaining the physical object, then simulating the operation and finally applying the guide plate to assist OBS to complete the operation; the PFNA group was treated by proximal femoral nail anti-rotation. The operation time, the intraoperative blood loss, Harris hip score (HHS), Oxford Hip Score (OHS), and complications were compared between the two groups.ResultsThe operation time and the intraoperative blood loss in the PFNA group were less than that in the OBS group, and there was a significant difference between the two groups (P < 0.05). The HHS during the 6th month using OBS was statistically higher than PFNA (P < 0.05), however, there were no significant differences in OHS during the 6th month between the OBS group and PFNA group (P > 0.05). The HHS and OHS during the 12th month in the OBS group were statistically better than in the PFNA group (P < 0.05).ConclusionThe OBS assisted by 3D printing and PFNA are effective measures for treating intertrochanteric fractures. Prior to making any decisions regarding internal fixation, it is crucial to evaluate the distinct circumstances of each patient thoroughly

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    iASPP induces EMT and cisplatin resistance in human cervical cancer through miR-20a-FBXL5/BTG3 signaling

    Get PDF
    Background: Epithelial-mesenchymal transition (EMT) and dysregulated microRNAs (miRNAs) have important roles in driving chemoresistance. We previously reported that iASPP is a key EMT inducer and could increase cisplatin resistance in cervical cancer (CC) cells. Herein, we investigate the downstream mechanisms through which iASPP contributes to EMT and cisplatin resistance in CC. Methods: By using a lentiviral system, we investigated the effects of iASPP knockdown on CC cell growth and chemosensitivity of CC cells to cisplatin in vivo. We examined if miR-20a, which was up-regulated following iASPP overexpression, would influence metastatic phenotypes and cisplatin resistance in CC cells, and explored the possible molecular mechanisms involved. Results: Knockdown of iASPP suppressed CC cell proliferation and sensitized CC cells to cisplatin in vivo. iASPP promotes miR-20a expression in a p53-dependent manner. Upregulation of miR-20a induced EMT and the recovery of CC cell invasion and cisplatin chemoresistance that was repressed by iASPP knockdown. We identified FBXL5 and BTG3 as two direct miR-20a targets. Silencing of FBXL5 and BTG3 restored cell invasion and cisplatin chemoresistance, which was suppressed by iASPP or miR-20a knockdown. Reduced FBXL5 and BTG3 expression was found in CC samples and associated with poor prognosis in CC patients. Conclusions: iASPP promotes EMT and confers cisplatin resistance in CC via miR-20a-FBXL5/BTG3 signaling

    In-plane optical anisotropy in ReS2 flakes determined by angle-resolved polarized optical contrast spectroscopy

    No full text
    Various in-plane anisotropic properties are observed for the layered semiconducting transition metal dichalcogenide (TMD), rhenium disulfide (ReS2) due to its reduced symmetry. The understanding of these unique anisotropic behaviors in ReS2 will promote its applications in optoelectronics. In this work, angle-resolved polarized optical contrast spectroscopy has proved to be an efficient, quantitative, and non-destructive method to probe the optical anisotropy in ReS2 flakes with different thicknesses. The contrast value of ReS2 displays the maximum intensity when the polarization of incident light is along the Re–Re chain direction, while the contrast shows the minimum value when the polarization is perpendicular. An empirical equation for in-plane anisotropic refractive index calculation has been proposed and the angle-resolved polarized optical contrasts of 1–3-layer ReS2 are calculated. The calculation results show good agreements with the experimental observations. This indicates that the proposed equation is indeed appropriate for the quantitative understanding of birefringence and dichroism in ReS2 flakes. Our results not only shed light on the identification of crystal axes in anisotropic materials by using angle-resolved polarized contrast spectroscopy, but also provide quantitative information about anisotropy in anisotropic materials such as ReS2.Ministry of Education (MOE)Accepted versionYYW and JJ gratefully acknowledge financial support by the Ministry of Science and Technology of the People’s Republic of China (grant number 2017YFD080120203) and the China Scholarship Council (201806125035). TTY and ZXS would like to acknowledge Ministry of Education (MOE) of Singapore for the funding of this research through the following grants, AcRF Tier 1 (reference no: RG103/16); AcRF Tier 1 (RG195/17); AcRF Tier 3 (MOE 2016-T3-1-006 (S)). JDZ and ZL acknowledge financial support by MOE Tier 2 (MOE 2015-T2-2-007, MOE 2015-T2-2- 043, MOE 2017-T2-2-136) and Tier 3 (MOE 2018-T3-1-002)

    Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China

    No full text
    The Fang’an quartz-vein gold deposit is located in the eastern part of the Bengbu uplift. The eastern part of the Bengbu uplift is considered to be the western extension of the Zhaoyuan gold mineralization zone in the Jiaodong area of Shandong Province and has huge mineralization potential. The Fang’an deposit was a newly discovered, small-sized gold deposit, and the research in the area is relatively weak. In this study, samples of quartz-vein type ore were collected from the ZK141, ZK1549, and ZK1665 drill holes of the Fang’an gold deposit. Based on the study of the geological characteristics, the major and trace elements of pyrite in different stages were analyzed by electron probe microanalyzer (EPMA), to explore the compositional characteristics of pyrite, the occurrence of gold, and the source of ore-forming fluid. The studies indicate that the deposit experienced four ore-forming stages: the quartz stage, the quartz-pyrite stage, the polymetallic sulfide stage, and the carbonate stage. The pyrites are grouped into three stages, corresponding to the first three ore-forming stages. The EPMA analyses showed that the major elements of pyrite were high Fe and low S, indicating that the formation was hydrothermal. The high content of Ni indicated that the metallogenic materials were derived from between the mantle and the lower crust. The general Co/Ni ratio of >1, with an average of 5.34, indicated that the ore-forming fluid was derived from the magmatic–hydrothermal fluid and wall rock. The Fang’an gold deposit mainly contains nano-gold

    Typomorphic Characteristics of Gold-Bearing Pyrite and Its Genetic Implications for the Fang’an Gold Deposit, the Bengbu Uplift, Eastern China

    No full text
    The Fang’an quartz-vein gold deposit is located in the eastern part of the Bengbu uplift. The eastern part of the Bengbu uplift is considered to be the western extension of the Zhaoyuan gold mineralization zone in the Jiaodong area of Shandong Province and has huge mineralization potential. The Fang’an deposit was a newly discovered, small-sized gold deposit, and the research in the area is relatively weak. In this study, samples of quartz-vein type ore were collected from the ZK141, ZK1549, and ZK1665 drill holes of the Fang’an gold deposit. Based on the study of the geological characteristics, the major and trace elements of pyrite in different stages were analyzed by electron probe microanalyzer (EPMA), to explore the compositional characteristics of pyrite, the occurrence of gold, and the source of ore-forming fluid. The studies indicate that the deposit experienced four ore-forming stages: the quartz stage, the quartz-pyrite stage, the polymetallic sulfide stage, and the carbonate stage. The pyrites are grouped into three stages, corresponding to the first three ore-forming stages. The EPMA analyses showed that the major elements of pyrite were high Fe and low S, indicating that the formation was hydrothermal. The high content of Ni indicated that the metallogenic materials were derived from between the mantle and the lower crust. The general Co/Ni ratio of >1, with an average of 5.34, indicated that the ore-forming fluid was derived from the magmatic–hydrothermal fluid and wall rock. The Fang’an gold deposit mainly contains nano-gold

    Moss-dominated biocrust-based biodiversity enhances carbon sequestration via water interception and plant-soil-microbe interactions

    No full text
    Summary: We investigated a nature-based solution (NbS) via incorporating biocrust into alfalfa-maize intercropping system to test carbon sequestration in seriously eroded agricultural soils. Field investigation showed that the NbS (moss-dominated biocrust + intercropping) massively lowered surface soil erosion by 94.5% and soil carbon (C) and nitrogen (N) loss by 94.7 and 96.8% respectively, while promoting rainwater interception by 82.2% relative to bare land (CK). There generally existed positive interactions between biocrust and cropping in the integrated standing biodiversity system. Enhanced plant biomass input into soils substantially promoted soil fungal community diversity and abundance under NbS (p < 0.05). This enabled NbS to evidently improve soil macroaggregate proportion and mean weight diameter. Critically, topsoil carbon storage was increased by 2.5 and 10.7%, compared with CK and pure intercropping (p < 0.05). Conclusively, the standing diversity under such NbS fostered soil C sequestration via water interception and plant-soil-microbe interactions in degraded agricultural soils

    Bubble Melt Electrospinning for Production of Polymer Microfibers

    No full text
    In this paper, we report an interesting bubble melt electrospinning (e-spinning) to produce polymer microfibers. Usually, melt e-spinning for fabricating ultrafine fibers needs &#8220;Taylor cone&#8222;, which is formed on the tip of the spinneret. The spinneret is also the bottleneck for mass production in melt e-spinning. In this work, a metal needle-free method was tried in the melt e-spinning process. The &#8220;Taylor cone&#8222; was formed on the surface of the broken polymer melt bubble, which was produced by an airflow. With the applied voltage ranging from 18 to 25 kV, the heating temperature was about 210&#8315;250 &#176;C, and polyurethane (TPU) and polylactic acid (PLA) microfibers were successfully fabricated by this new melt e-spinning technique. During the melt e-spinning process, polymer melt jets ejected from the burst bubbles could be observed with a high-speed camera. Then, polymer microfibers could be obtained on the grounded collector. The fiber diameter ranged from 45 down to 5 &#956;m. The results indicate that bubble melt e-spinning may be a promising method for needleless production in melt e-spinning
    corecore