534 research outputs found

    Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability

    Get PDF
    This document is the Accepted Manuscript version of the following article: Dian-Wu Yue, and Yichuang Sun, ‘Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability’, Wireless Personal Communications, Vol. 90 (4): 1951-1970, first available online on 20 June 2016. Under embargo. Embargo end date: 20 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs11277-016-3432-4This paper is concerned with a wireless multiple-antenna system operating in multiple-input multiple-output (MIMO) fading channels with channel state information being known at both transmitter and receiver. By spatiotemporal subchannel selection and power control, it aims to minimize the average transmit power (ATP) of the MIMO system while achieving an exponential type of average bit error rate (BER) for each data stream. Under the constraints on each subchannel that individual outage probability and average BER are given, based on a traditional upper bound and a dynamic upper bound of Q function, two closed-form ATP expressions are derived, respectively, which can result in two different power allocation schemes. Numerical results are provided to validate the theoretical analysis, and show that the power allocation scheme with the dynamic upper bound can achieve more power savings than the one with the traditional upper bound.Peer reviewe

    GPS载波相位测量中的信号多路径效应影响研究

    Get PDF
    Author name used in this publication: 黄丁发Author name used in this publication: 丁晓利, DING Xiao-liAuthor name used in this publication: 钟萍Author name used in this publication: 李成钢Title in Traditional Chinese: GPS載波相位測量中的信號多路徑效應影響研究Journal title in Traditional Chinese: 測繪學報2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    A specific scoliosis classification correlating with brace treatment: description and reliability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal classification systems for scoliosis which were developed to correlate with surgical treatment historically have been used in brace treatment as well. Previously, there had not been a scoliosis classification system developed specifically to correlate with brace design and treatment. The purpose of this study is to show the intra- and inter- observer reliability of a new scoliosis classification system correlating with brace treatment.</p> <p>Methods</p> <p>An original classification system ("Rigo Classification") was developed in order to define specific principles of correction required for efficacious brace design and fabrication. The classification includes radiological as well as clinical criteria. The radiological criteria are utilized to differentiate five basic types of curvatures including: (I) imbalanced thoracic (or three curves pattern), (II) true double (or four curve pattern), (III) balanced thoracic and false double (non 3 non 4), (IV) single lumbar and (V) single thoracolumbar. In addition to the radiological criteria, the Rigo Classification incorporates the curve pattern according to SRS terminology, the balance/imbalance at the transitional point, and L4-5 counter-tilting. To test the intra-and inter-observer reliability of the Rigo Classification, three observers (1 MD, 1 PT and 1 CPO) measured (and one of them, the MD, re-measured) 51 AP radiographs including all curvature types.</p> <p>Results</p> <p>The intra-observer Kappa value was 0.87 (acceptance >0.70). The inter-observer Kappa values fluctuated from 0.61 to 0.81 with an average of 0.71 (acceptance > 0.70).</p> <p>Conclusions</p> <p>A specific scoliosis classification which correlates with brace treatment has been proposed with an acceptable intra-and inter-observer reliability.</p

    Linker-extended native cyanovirin-N facilitates PEGylation and potently inhibits HIV-1 by targeting the glycan ligand

    Get PDF
    Cyanovirin-N (CVN) potently inhibits human immunodeficiency virus type 1 (HIV-1) infection, but both cytotoxicity and immunogenicity have hindered the translation of this protein into a viable therapeutic. A molecular docking analysis suggested that up to 12 residues were involved in the interaction of the reverse parallel CVN dimer with the oligosaccharide targets, among which Leu-1 was the most prominent hot spot residue. This finding provided a possible explanation for the lack of anti-HIV-1 activity observed with N-terminal PEGylated CVN. Therefore, linker-CVN (LCVN) was designed as a CVN derivative with a flexible and hydrophilic linker (Gly4Ser)3 at the N-terminus. The N-terminal α-amine of LCVN was PEGylated to create 10 K PEG-aldehyde (ALD)-LCVN. LCVN and 10 K PEG-ALD-LCVN retained the specificity and affinity of CVN for high mannose N-glycans. Moreover, LCVN exhibited significant anti-HIV-1 activity with attenuated cytotoxicity in the HaCaT keratinocyte cell line and MT-4 T lymphocyte cell lines. 10 K PEG-ALD-LCVN also efficiently inactivated HIV-1 with remarkably decreased cytotoxicity and pronounced cell-to-cell fusion inhibitory activity in vitro. The linker-extended CVN and the mono-PEGylated derivative were determined to be promising candidates for the development of an anti-HIV-1 agent. This derivatization approach provided a model for the PEGylation of biologic candidates without introducing point mutations. © 2014 Chen et al

    Duckweed (Lemna minor) as a Model Plant System for the Study of Human Microbial Pathogenesis

    Get PDF
    BACKGROUND: Plant infection models provide certain advantages over animal models in the study of pathogenesis. However, current plant models face some limitations, e.g., plant and pathogen cannot co-culture in a contained environment. Development of such a plant model is needed to better illustrate host-pathogen interactions. METHODOLOGY/PRINCIPAL FINDINGS: We describe a novel model plant system for the study of human pathogenic bacterial infection on a large scale. This system was initiated by co-cultivation of axenic duckweed (Lemna minor) plants with pathogenic bacteria in 24-well polystyrene cell culture plate. Pathogenesis of bacteria to duckweed was demonstrated with Pseudomonas aeruginosa and Staphylococcus aureus as two model pathogens. P. aeruginosa PAO1 caused severe detriment to duckweed as judged from inhibition to frond multiplication and chlorophyll formation. Using a GFP-marked PAO1 strain, we demonstrated that bacteria colonized on both fronds and roots and formed biofilms. Virulence of PAO1 to duckweed was attenuated in its quorum sensing (QS) mutants and in recombinant strains overexpressing the QS quenching enzymes. RN4220, a virulent strain of S. aureus, caused severe toxicity to duckweed while an avirulent strain showed little effect. Using this system for antimicrobial chemical selection, green tea polyphenols exhibited inhibitory activity against S. aureus virulence. This system was further confirmed to be effective as a pathogenesis model using a number of pathogenic bacterial species. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that duckweed can be used as a fast, inexpensive and reproducible model plant system for the study of host-pathogen interactions, could serve as an alternative choice for the study of some virulence factors, and could also potentially be used in large-scale screening for the discovery of antimicrobial chemicals

    Development and Functional Analysis of Novel Genetic Promoters Using DNA Shuffling, Hybridization and a Combination Thereof

    Get PDF
    BACKGROUND: Development of novel synthetic promoters with enhanced regulatory activity is of great value for a diverse range of plant biotechnology applications. METHODOLOGY: Using the Figwort mosaic virus full-length transcript promoter (F) and the sub-genomic transcript promoter (FS) sequences, we generated two single shuffled promoter libraries (LssF and LssFS), two multiple shuffled promoter libraries (LmsFS-F and LmsF-FS), two hybrid promoters (FuasFScp and FSuasFcp) and two hybrid-shuffled promoter libraries (LhsFuasFScp and LhsFSuasFcp). Transient expression activities of approximately 50 shuffled promoter clones from each of these libraries were assayed in tobacco (Nicotiana tabacum cv. Xanthi) protoplasts. It was observed that most of the shuffled promoters showed reduced activity compared to the two parent promoters (F and FS) and the CaMV35S promoter. In silico studies (computer simulated analyses) revealed that the reduced promoter activities of the shuffled promoters could be due to their higher helical stability. On the contrary, the hybrid promoters FuasFScp and FSuasFcp showed enhanced activities compared to F, FS and CaMV 35S in both transient and transgenic Nicotiana tabacum and Arabidopsis plants. Northern-blot and qRT-PCR data revealed a positive correlation between transcription and enzymatic activity in transgenic tobacco plants expressing hybrid promoters. Histochemical/X-gluc staining of whole transgenic seedlings/tissue-sections and fluorescence images of ImaGene Green™ treated roots and stems expressing the GUS reporter gene under the control of the FuasFScp and FSuasFcp promoters also support the above findings. Furthermore, protein extracts made from protoplasts expressing the human defensin (HNP-1) gene driven by hybrid promoters showed enhanced antibacterial activity compared to the CaMV35S promoter. SIGNIFICANCE/CONCLUSION: Both shuffled and hybrid promoters developed in the present study can be used as molecular tools to study the regulation of ectopic gene expression in plants

    Environmental surveillance and in vitro activity of antimicrobial agents against Legionella pneumophila isolated from hospital water systems in Campania, South Italy: a 5-year study.

    Get PDF
    Abstract Background Legionellosis' treatment failures have been recently reported showing the possibility of resistance development to traditional therapy, especially in healthcare related disease cases. Environmental impact of antibiotic residues, especially in hospital waters, may act on the resistome of Legionella resulting in developing resistance mechanisms. Objectives In this study we investigate the antibiotic susceptibility of environmental Legionella pneumophila (Lpn) strains isolated from hospital water systems in Campania, a region located in Southwest Italy. Methods 5321 hospital water samples were investigated for the presence of Lpn. Among positive samples, antibiotic susceptibility was tested for a random subset of 125 Lpn strains (25 Lpn isolates from each of the following serogroups: 1, 3, 5, 6, 8). Susceptibility testing was performed, using the E-test on buffered charcoal yeast extract agar supplemented with α-ketoglutarate, for 10 antimicrobial drugs: azithromycin, cefotaxime, clarithromycin, doxycycline, erythromycin, rifampicin, tigecycline, ciprofloxacin, levofloxacin and moxifloxacin. Non parametric tests were used to determine and assess the significant differences in susceptibility to the different antimicrobics between the serogroups. Results Among the isolated strains, none showed resistance to the antibiotics tested. Rifampicin was the most active antibiotic against overall Legionella strains, followed by levofloxacin. Between the macrolides the clarithromycin was overall the most active drug, instead the azithromycin was the less active. Analyzing the different serogroups a significant difference was found between serogroup 1 and non-1 serogroup isolates for doxycycline and tigecycline. Conclusions Antibiotic susceptibility of environmental isolates of Legionella spp. might be useful for the early detection of resistance to antibiotics that directly impacts on mortality and length of hospital stay

    A Three-Component Gene Expression System and Its Application for Inducible Flavonoid Overproduction in Transgenic Arabidopsis thaliana

    Get PDF
    Inducible gene expression is a powerful tool to study and engineer genes whose overexpression could be detrimental for the host organisms. However, only limited systems have been adopted in plant biotechnology. We have developed an osmotically inducible system using three components of plant origin, RD29a (Responsive to Dehydration 29A) promoter, CBF3 (C-repeat Binding Factor 3) transcription factor and cpl1-2 (CTD phosphatase-like 1) mutation. The osmotic stress responsible RD29a promoter contains the CBF3 binding sites and thus RD29A-CBF3 feedforward cassette enhances induction of RD29a promoter under stress. The cpl1-2 mutation in a host repressor CPL1 promotes stress responsible RD29a promoter expression. The efficacy of this system was tested using PAP1 (Production of Anthocyanin Pigment 1) transgene, a model transcription factor that regulates the anthocyanin pathway in Arabidopsis. While transgenic plants with only one or two of three components did not reproducibly accumulate anthocyanin pigments above the control level, transgenic cpl1 plants containing homozygous RD29a-PAP1 and RD29a-CBF3 transgenes produced 30-fold higher level of total anthocyanins than control plants upon cold treatment. Growth retardation and phytochemical production of transgenic plants were minimum under normal conditions. The flavonoid profile in cold-induced transgenic plants was determined by LC/MS/MS, which resembled that of previously reported pap1-D plants but enriched for kaempferol derivatives. These results establish the functionality of the inducible three-component gene expression system in plant metabolic engineering. Furthermore, we show that PAP1 and environmental signals synergistically regulate the flavonoid pathway to produce a unique flavonoid blend that has not been produced by PAP1 overexpression or cold treatment alone

    Reliable Detection of Paternal SNPs within Deletion Breakpoints for Non-Invasive Prenatal Exclusion of Homozygous α0-Thalassemia in Maternal Plasma

    Get PDF
    Reliable detection of large deletions from cell-free fetal DNA (cffDNA) in maternal plasma is challenging, especially when both parents have the same deletion owing to a lack of specific markers for fetal genotyping. In order to evaluate the efficacy of a non-invasive prenatal diagnosis (NIPD) test to exclude α-thalassemia major that uses SNPs linked to the normal paternal α-globin allele, we established a novel protocol to reliably detect paternal SNPs within the (−−SEA) breakpoints and performed evaluation of the diagnostic potential of the protocol in a total of 67 pregnancies, in whom plasma samples were collected prior to invasive obstetrics procedures in southern China. A group of nine SNPs identified within the deletion breakpoints were scanned to select the informative SNPs in each of the 67 couples DNA by multiplex PCR based mini-sequencing technique. The paternally inherited SNP allele from cffDNA was detected by allele specific real-time PCR. A protocol for reliable detection of paternal SNPs within the (−−SEA) breakpoints was established and evaluation of the diagnostic potential of the protocol was performed in a total of 67 pregnancies. In 97% of the couples one or more different SNPs within the deletion breakpoint occurred between paternal and maternal alleles. Homozygosity for the (−−SEA) deletion was accurately excluded in 33 out of 67 (49.3%, 95% CI, 25.4–78.6%) pregnancies through the implementation of the protocol. Protocol was completely concordant with the traditional reference methods, except for two cases that exhibited uncertain results due to sample hemolysis. This method could be used as a routine NIPD test to exclude gross fetal deletions in α-thalassemia major, and could further be employed to test for other diseases due to gene deletion

    Rapid screening for chromosomal aneuploidies using array-MLPA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromosome abnormalities, especially trisomy of chromosome 21, 13, or 18 as well as sex chromosome aneuploidy, are a well-established cause of pregnancy loss. Cultured cell karyotype analysis and FISH have been considered reliable detectors of fetal abnormality. However, results are usually not available for 3-4 days or more. Multiplex ligation-dependent probe amplification (MLPA) has emerged as an alternative rapid technique for detection of chromosome aneuploidies. However, conventional MLPA does not allow for relative quantification of more than 50 different target sequences in one reaction and does not detect mosaic trisomy. A multiplexed MLPA with more sensitive detection would be useful for fetal genetic screening.</p> <p>Methods</p> <p>We developed a method of array-based MLPA to rapidly screen for common aneuploidies. We designed 116 universal tag-probes covering chromosomes 13, 18, 21, X, and Y, and 8 control autosomal genes. We performed MLPA and hybridized the products on a 4-well flow-through microarray system. We determined chromosome copy numbers by analyzing the relative signals of the chromosome-specific probes.</p> <p>Results</p> <p>In a blind study of 161 peripheral blood and 12 amniotic fluid samples previously karyotyped, 169 of 173 (97.7%) including all the amniotic fluid samples were correctly identified by array-MLPA. Furthermore, we detected two chromosome X monosomy mosaic cases in which the mosaism rates estimated by array-MLPA were basically consistent with the results from karyotyping. Additionally, we identified five Y chromosome abnormalities in which G-banding could not distinguish their origins for four of the five cases.</p> <p>Conclusions</p> <p>Our study demonstrates the successful application and strong potential of array-MLPA in clinical diagnosis and prenatal testing for rapid and sensitive chromosomal aneuploidy screening. Furthermore, we have developed a simple and rapid procedure for screening copy numbers on chromosomes 13, 18, 21, X, and Y using array-MLPA.</p
    corecore