2,286 research outputs found

    A Tri-band-notched UWB Antenna with Low Mutual Coupling between the Band-notched Structures

    Get PDF
    A compact printed U-shape ultra-wideband (UWB) antenna with triple band-notched characteristics is presented. The proposed antenna, with compact size of 24×33 mm2, yields an impedance bandwidth of 2.8-12GHz for VSWR<2, except the notched bands. The notched bands are realized by introducing two different types of slots. Two C-shape half-wavelength slots are etched on the radiating patch to obtain two notched bands in 3.3-3.7GHz for WiMAX and 7.25-7.75GHz for downlink of X-band satellite communication systems. In order to minimize the mutual coupling between the band-notched structures, the middle notched band in 5-6GHz for WLAN is achieved by using a U-slot defected ground structure. The parametric study is carried out to understand the mutual coupling. Surface current distributions and equivalent circuit are used to illustrate the notched mechanism. The performance of this antenna both by simulation and by experiment indicates that the proposed antenna is suitable and a good candidate for UWB applications

    Review on Connections for Original Bamboo Structures

    Get PDF
    Bamboo is a green construction material in line with sustainable development strategies. The use of raw bamboo in architecture has existed since ancient times. In the long development years of original bamboo buildings, many areas in the world gradually formed unique bamboo buildings, which have become an important local cultural feature. For building structures, joints are the key to ensure structural load transfer. Because of hollow and thin-walled material property of bamboo, the connection in raw bamboo buildings has always been a major difficulty and problem in the application of bamboo, which seriously hinders the development of original bamboo structures. In order to promote the use of raw bamboo, two traditional connection methods in raw bamboo structures are described in this paper firstly, with the advantages and disadvantages of the two methods pointed out. Also, research progress on four categories of raw bamboo building joints is described namely, bolt joints, steel member joints, filler reinforced joints and other types of joints. This work can provide a reference for future research and engineering applications

    Review of connections for engineered bamboo structures

    Get PDF
    Bamboo is a green building material that is environmentally friendly and has great development value. However, the limited mechanical properties and heterogeneous dimensions of natural bamboo poles curb the application of bamboo in building structures. A transverse section of engineered bamboo is regular and compact, and its mechanical properties are stable, which can meet the requirements for physical and mechanical properties of materials in modern building structures. Though application of engineered bamboo has just started, it is of great significance to study the connection performance and corresponding influence factors for popularization and application of modern bamboo structures. This paper is focused on a review of research progress for connections in engineered bamboo structures. Firstly, a study on embedding strength and the performance of bolted joints is presented, including calculation methods described with a proposal for future development of standards suitable for the characteristics of engineered bamboo materials. Secondly, research on carpentry joints is introduced, namely tenon-mortise joints, nail joints and truss plate joints. Finally, some engineering examples are briefly introduced. This work can provide a reference for further research on connections in engineered bamboo structures

    Effect of shell thickness on small-molecule solar cells enhanced by dual plasmonic gold-silica nanorods

    Get PDF
    Cataloged from PDF version of article.Chemically synthesized gold (Au)-silica nanorods with shell thickness of 0 nm-10 nm were incorporated into the bulk heterojunction of a small-molecule organic solar cell. At optimal (1 wt. %) concentration, Au-silica nanorods with 5 nm shell thickness resulted in the highest power conversion efficiency of 8.29% with 27% relative enhancement. Finite-difference time-domain simulation shows that the localized electric field intensity at the silica shell-organic layer interface decreases with the increase of shell thickness for both 520 nm and 680 nm resonance peaks. The enhanced haze factor for transmission/reflection of the organic layer is not strongly dependent on the shell thickness. Bare Au nanorods yielded the lowest efficiency of 5.4%. Light intensity dependence measurement of the short-circuit current density shows that the silica shell reduces bimolecular recombination at the Au surface. As a result, both localized field intensity and light scattering are involved in efficiency enhancement for an optimized shell thickness of 5 nm. (C) 2014 AIP Publishing LLC
    corecore