170 research outputs found

    An Empirical Study on the Influencing Factors of University Studentsā€™ Sense of Gain in Ideological and Political Theory Course -- Take the Course of ā€œIdeological and Moral Cultivation and Legal Basisā€as An Example

    Get PDF
    The self-made questionnaire was administered to a random sample of 1000 undergraduates, the result of data analysis shows that the ā€œMechanism model of influencing factors on university studentsā€™ ā€˜Basic Courseā€™  gainā€ proposed in this paper can partly explain the influence of personal, family, school and social factors on college studentsā€™ ā€œBasic Courseā€ acquisition; The factors of family, school and society are the external factors which affect the studentsā€™ sense of gain ofā€œBasic Courseā€, and the personal factors are the internal factors which affect the studentsā€™ sense of gain of ā€œBasic Courseā€; External factors act through internal factors. Based on that, this paper puts forward some suggestions and countermeasures to enhance the sense of gain of university studentsā€™ā€œBasic coursesā€

    Genome-wide analysis of the GRAS gene family in Liriodendron chinense reveals the putative function in abiotic stress and plant development

    Get PDF
    IntroductionGRAS genes encode plant-specific transcription factors that play essential roles in plant growth and development. However, the members and the function of the GRAS gene family have not been reported in Liriodendron chinense. L. chinense, a tree species in the Magnolia family that produces excellent timber for daily life and industry. In addition, it is a good relict species for plant evolution research.MethodsTherefore, we conducted a genome-wide study of the LcGRAS gene family and identified 49 LcGRAS genes in L. chinense.ResultsWe found that LcGRAS could be divided into 13 sub-groups, among which there is a unique branch named HAM-t. We carried out RNA sequencing analysis of the somatic embryos from L. chinense and found that LcGRAS genes are mainly expressed after heart-stage embryo development, suggesting that LcGRAS may have a function during somatic embryogenesis. We also investigated whether GRAS genes are responsive to stress by carrying out RNA sequencing (RNA-seq) analysis, and we found that the genes in the PAT subfamily were activated upon stress treatment, suggesting that these genes may help plants survive stressful environments. We found that PIF was downregulated and COR was upregulated after the transient overexpression of PATs, suggesting that PAT may be upstream regulators of cold stress. DiscussionCollectively, LcGRAS genes are conserved and play essential roles in plant development and adaptation to abiotic stress

    Identification of Clinical Relevant Molecular Subtypes of Pheochromocytoma

    Get PDF
    Pheochromocytoma (PCC) is a rare neuroendocrine tumor of the adrenal gland with a high rate of mortality if diagnosedĀ atĀ a lateĀ stage. Common symptoms of pheochromocytoma include headache, anxiety, palpitation, and diaphoresis. Different treatments are under observation for PCC but there is still no effective treatment option. Recently, the gene expression profiling of various tumors has provided new subtype-specific options for targeted therapies. In this study, using data sets from TCGA and the GSE19422 cohorts, we identified two distinct PCC subtypes with distinct gene expression patterns. Genes enriched in Subtype I PCCs were involved in the dopaminergic synapse, nicotine addiction, and long-term depression pathways, while genes enriched in subtype II PCCs were involved in protein digestion and absorption, vascular smooth muscle contraction, and ECM receptor interaction pathways. We further identified subtype specific genes such as ALK, IGF1R, RET, and RSPO2 for subtype I and EGFR, ESR1, and SMO for subtype II, the overexpression of which led to cell invasion and tumorigenesis. These genes identified in the present research may serve as potential subtype-specific therapeutic targets to understand the underlying mechanisms of tumorigenesis. Our findings may further guide towards the development of targeted therapies and potential molecular biomarkers against PCC

    Comprehensive bulk and single-cell transcriptome profiling give useful insights into the characteristics of osteoarthritis associated synovial macrophages

    Get PDF
    BackgroundOsteoarthritis (OA) is a common chronic joint disease, but the association between molecular and cellular events and the pathogenic process of OA remains unclear.ObjectiveThe study aimed to identify key molecular and cellular events in the processes of immune infiltration of the synovium in OA and to provide potential diagnostic and therapeutic targets.MethodsTo identify the common differential expression genes and function analysis in OA, we compared the expression between normal and OA samples and analyzed the proteinā€“protein interaction (PPI). Additionally, immune infiltration analysis was used to explore the differences in common immune cell types, and Gene Set Variation Analysis (GSVA) analysis was applied to analyze the status of pathways between OA and normal groups. Furthermore, the optimal diagnostic biomarkers for OA were identified by least absolute shrinkage and selection operator (LASSO) models. Finally, the key role of biomarkers in OA synovitis microenvironment was discussed through single cell and Scissor analysis.ResultsA total of 172 DEGs (differentially expressed genes) associated with osteoarticular synovitis were identified, and these genes mainly enriched eight functional categories. In addition, immune infiltration analysis found that four immune cell types, including Macrophage, B cell memory, B cell, and Mast cell were significantly correlated with OA, and LASSO analysis showed that Macrophage were the best diagnostic biomarkers of immune infiltration in OA. Furthermore, using scRNA-seq dataset, we also analyzed the cell communication patterns of Macrophage in the OA synovial inflammatory microenvironment and found that CCL, MIF, and TNF signaling pathways were the mainly cellular communication pathways. Finally, Scissor analysis identified a population of M2-like Macrophages with high expression of CD163 and LYVE1, which has strong anti-inflammatory ability and showed that the TNF gene may play an important role in the synovial microenvironment of OA.ConclusionOverall, Macrophage is the best diagnostic marker of immune infiltration in osteoarticular synovitis, and it can communicate with other cells mainly through CCL, TNF, and MIF signaling pathways in microenvironment. In addition, TNF gene may play an important role in the development of synovitis

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    In situ phytoextraction of Mn and NH<sub>4</sub><sup>+</sup>-N from aqueous electrolytic manganese residue solution by Pistia stratiotes: Effects of Fe/Co presence and rhizospheric microbe synergistic involvement

    Get PDF
    The electrolytic manganese industry produces a large amount of electrolytic manganese residue (EMR). Soluble Mn, NH4+-N, and other pollutants may be released from the open-air stacked EMR and transported to the environment along with rainfall or surface runoff. Aqueous EMR solution (AES) generally contains various elements required for plant growth, and phytoremediation can be applied to remove these pollutants from AES. Since the contents of Fe and Co vary greatly in AES depending on the ore sources as well as the pre-treatment processes, the presence of bioavailable Fe and Co at different levels may affect plant growth, the rhizosphere microbes, and pollutant removal. The present study investigated the in-situ removal of Mn(II) and NH4+-N from AES solution using free floating aquatic plant Pistia stratiotes, focusing especially on the effects of Fe/Co presence and rhizospheric microbe synergistic involvement on contaminant removal. The results showed that 69.08% of Mn and 94.99% of NH4+-N were removed by P. stratiotes in 24 d. Both the presence of Fe(II) and Co(II) facilitated the Mn(II) immobilization and increased Mn(II) removal by 19ā€“31% due to the enhanced peroxidase activity and the increased Mn accumulating in roots The complete removal of Mn from AES was found in the presence of Fe(II) at 2 mg Lāˆ’1 or Co(II) at 0.5 mg Lāˆ’1 and more than 51% accumulated Mn in the roots was stored in the vacuole and cytoplasm. BioMnOx was found on the surface of the roots, revealing that rhizofiltration, rhizospheric plaque/biofilm formation, and Mn biogeochemical cycle exert synergic effects on Mn(II) immobilization. The findings of the present study demonstrate the feasibility of using P. stratiotes in the treatment of aqueous EMR solutions and the presence of an appropriate amount of bio-available Fe and Co can promote the removal of Mn(II) and NH4+-N.<br/
    • ā€¦
    corecore