65 research outputs found
Tumor‐derived exosomal PD-L1: a new perspective in PD-1/PD-L1 therapy for lung cancer
Exosomes play a crucial role in facilitating intercellular communication within organisms. Emerging evidence indicates that a distinct variant of programmed cell death ligand-1 (PD-L1), found on the surface of exosomes, may be responsible for orchestrating systemic immunosuppression that counteracts the efficacy of anti-programmed death-1 (PD-1) checkpoint therapy. Specifically, the presence of PD-L1 on exosomes enables them to selectively target PD-1 on the surface of CD8+ T cells, leading to T cell apoptosis and impeding T cell activation or proliferation. This mechanism allows tumor cells to evade immune pressure during the effector stage. Furthermore, the quantification of exosomal PD-L1 has the potential to serve as an indicator of the dynamic interplay between tumors and immune cells, thereby suggesting the promising utility of exosomes as biomarkers for both cancer diagnosis and PD-1/PD-L1 inhibitor therapy. The emergence of exosomal PD-L1 inhibitors as a viable approach for anti-tumor treatment has garnered significant attention. Depleting exosomal PD-L1 may serve as an effective adjunct therapy to mitigate systemic immunosuppression. This review aims to elucidate recent insights into the role of exosomal PD-L1 in the field of immune oncology, emphasizing its potential as a diagnostic, prognostic, and therapeutic tool in lung cancer
Thiophene Disubstituted Benzothiadiazole Derivatives: An Effective Planarization Strategy Toward Deep-Red to Near-Infrared (NIR) Organic Light-Emitting Diodes
As one of the three primary colors that are indispensable in full-color displays, the development of red emitters is far behind the blue and green ones. Here, three novel orange-yellow to near-infrared (NIR) emitters based on 5,6-difluorobenzo[c][1,2,5]thiadiazole (BTDF) namely BTDF-TPA, BTDF-TTPA, and BTDF-TtTPA were designed and synthesized. Density functional theory analysis and photophysical characterization reveal that these three materials possess hybridized local and charge-transfer (HLCT) state feature and a feasible reverse intersystem crossing (RISC) from the high-lying triplet state to the singlet state may conduce to an exciton utilization exceeding the limit of 25% of traditional fluorescence materials under electrical excitation. The insertion of thiophene with small steric hindrance as π-bridge between the electron-donating (D) moiety triphenylamine (TPA) and the electron-accepting (A) moiety BTDF not only results in a remarkable 67 nm red-shift of the emission peak but also brings about a large overlap of frontier molecular orbitals to guarantee high radiative transition rate that is of great significance to obtain high photoluminescence quantum yield (PLQY) in the “energy-gap law” dominated long-wavelength emission region. Consequently, an attractive high maximum external quantum efficiency (EQE) of 5.75% was achieved for the doped devices based on these thiophene π-bridged emitters, giving a deep-red emission with small efficiency roll-off. Remarkably, NIR emission could be obtained for the non-doped devices, achieving an excellent maximum EQE of 1.44% and Commission Internationale de l'Éclairage (CIE) coordinates of (0.71, 0.29). These results are among the highest efficiencies in the reported deep-red to NIR fluorescent OLEDs and offer a new π-bridge design strategy in D-π-A and D-π-A-π-D red emitter design
Dual antiplatelet therapy for ischemic stroke with intracranial arterial stenosis: a systematic review and meta-analysis
BackgroundThe safety and efficacy of dual antiplatelet therapy (DAPT) in ischemic stroke patients with intracranial artery stenosis (ICAS) remain contentious.AimsThis study evaluates DAPT’s effectiveness and safety for these patients.MethodsThis review was reported following PRISMA 2020 guidelines. A comprehensive search was conducted in PubMed, Embase, Cochrane Library, ClinicalTrials.gov, CNKI, WanFang, VIP, and SinoMed up to June 20, 2023, for randomized controlled trials comparing efficacy and safety of DAPT against single antiplatelet therapy (SAPT) in ischemic stroke patients with ICAS. The primary outcome was a composite of ischemic and bleeding events. Secondary outcomes included stroke (cerebral infarction and hemorrhage), ischemic events, and cerebral infarction. Safety outcomes assessed were bleeding events, cerebral hemorrhage, and mortality. Risk ratios (RRs) with 95% confidence intervals (CIs) were synthesized using Review Manager 5.4.ResultsAnalysis of 21 randomized controlled trials involving 3,591 patients revealed that DAPT significantly lowered the rate of ischemic and bleeding events (RR = 0.52; 95% CI: 0.46–0.59, p < 0.001) and recurrent stroke (RR = 0.37; 95% CI: 0.30–0.44, p < 0.001) compared to SAPT. There was no significant increase in bleeding events (RR = 1.34; 95% CI: 0.97–1.85, p = 0.07) or cerebral hemorrhage (RR = 0.47; 95% CI: 0.17–1.31, p = 0.15).ConclusionDAPT proveed to be effective and safe for ischemic stroke patients with ICAS and significantly reduced stroke and the composite endpoint of ischemic and bleeding events without elevating bleeding risks
Different Effects of Total Bilirubin on 90-Day Mortality in Hospitalized Patients With Cirrhosis and Advanced Fibrosis: A Quantitative Analysis
Introduction: Total bilirubin (TB) is a major prognosis predictor representing liver failure in patients with acute on chronic liver failure (ACLF). However, the cutoff value of TB for liver failure and whether the same cutoff could be applied in both cirrhotic and non-cirrhotic patients remain controversial. There is a need to obtain the quantitative correlation between TB and short-term mortality via evidence-based methods, which is critical in establishing solid ACLF diagnostic criteria.Methods: Patients hospitalized with cirrhosis or advanced fibrosis (FIB-4 > 1.45) were studied. TB and other variables were measured at baseline. The primary outcome was 90-day transplantation-free mortality. Multi-variable Cox proportional hazard model was used to present the independent risk of mortality due to TB. Generalized additive model and second derivate (acceleration) were used to plot the “TB-mortality correlation curves.” The mathematical (maximum acceleration) and clinical (adjusted 28-day transplantation-free mortality rate reaching 15%) TB cutoffs for liver failure were both calculated.Results: Among the 3,532 included patients, the number of patients with cirrhosis and advanced fibrosis were 2,592 and 940, respectively, of which cumulative 90-day mortality were 16.6% (430/2592) and 7.4% (70/940), respectively. Any increase of TB was found the independent risk factor of mortality in cirrhotic patients, while only TB >12 mg/dL independently increased the risk of mortality in patients with advanced fibrosis. In cirrhotic patients, the mathematical TB cutoff for liver failure is 14.2 mg/dL, with 23.3% (605/2592) patients exceeding it, corresponding to 13.3 and 25.0% adjusted 28- and 90-day mortality rate, respectively. The clinical TB cutoff for is 18.1 mg/dL, with 18.2% (471/2592) patients exceeding it. In patients with advanced fibrosis, the mathematical TB cutoff is 12.1 mg/dL, 33.1% (311/940) patients exceeding it, corresponding to 2.9 and 8.0% adjusted 28- and 90-day mortality rate, respectively; the clinical TB cutoff was 36.0 mg/dL, 1.3% (12/940) patients above it.Conclusion: This study clearly demonstrated the significantly different impact of TB on 90-day mortality in patients with cirrhosis and advanced fibrosis, proving that liver failure can be determined by TB alone in cirrhosis but not in advanced fibrosis. The proposed TB cutoffs for liver failure provides solid support for the establishment of ACLF diagnostic criteria
Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults
Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We
estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from
1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories.
Methods We used data from 3663 population-based studies with 222 million participants that measured height and
weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate
trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children
and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the
individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference)
and obesity (BMI >2 SD above the median).
Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in
11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed
changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and
140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of
underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and
countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior
probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse
was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of
thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a
posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%)
with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and
obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for
both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such
as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged
children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls
in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and
42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents,
the increases in double burden were driven by increases in obesity, and decreases in double burden by declining
underweight or thinness.
Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an
increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy
nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of
underweight while curbing and reversing the increase in obesit
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract
Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10−16) with nuclear cataract and identified five new loci associated with this disease: SOX2-OT (rs9842371, P = 1.7 × 1
Research on the Integration of STEM Education into the Rural Elementary School Science Curriculum: An Example from Rural Elementary Schools in Western China
Due to the limitation of social economic conditions, the teaching effect of science in rural elementary schools remains unsatisfactory and poorly studied. This research integrates STEM education into rural elementary school science courses to explore whether STEM courses are effective in improving students' knowledge and ability, asking: Are STEM courses better than traditional science courses in improving students' knowledge and abilities? An experimental study of STEM curriculum teaching was conducted in science education at Jiujiang elementary School in Shuangliu County, Chengdu, China. The experimental group receiving STEM classes had increased total score, basic knowledge, and ability expansion compared to the control group receiving traditional classes. This shows that the integration of STEM education into rural elementary school science courses is feasible and effective
Parallel Factor Analysis with 3DEEMS of Dissolved Organic Matter from Deep Porous Medium Reservoirs in the City of Kaifeng
The deep geothermal water found within Kaifeng City, Henan province, China, is mainly contained within a loose-pore geothermal reservoir in the Minghuazhen Formation (Neogene Period). To understand the role and composition of Dissolved Organic Matter (DOM) in geothermal water, water samples collected from 13 geothermal wells at different depths were studied using three-dimensional (3D) excitation-emission matrix-parallel factor (EEM-PARAFAC) analysis. Fluorescent components were analyzed according to depth, and DOM in geothermal water between 800 m and 1600 m was classified. The results show that the fluorescence index (FI), biological index (BIX), and humification index (HIX) of DOM differ among geothermal water from different thermal reservoirs. Based on these three indices, the humification degree of DOM in deep geothermal water in Kaifeng City is low and is mainly derived from an endogenous source, which is closely related to microbial activities in thermal reservoirs. The fluorescent components of DOM in geothermal water from depths less than 1200 m are mainly tryptophan, tyrosine, and fulvic acid-like. The fluorescent components of DOM in geothermal water from depths greater than 1200 m are more complex, with tryptophan, tyrosine, humic acid, and fulvic acid-like components. Therefore, the characteristics of DOM composition in the geothermal water from different reservoirs in Kaifeng can also be used to infer and explain that the quality of deep geothermal water has not been affected by human activities, and there is no obvious hydraulic connection between the geothermal water of each thermal reservoir
- …