73 research outputs found
Quantifying the complexity of random Boolean networks
We study two measures of the complexity of heterogeneous extended systems,
taking random Boolean networks as prototypical cases. A measure defined by
Shalizi et al. for cellular automata, based on a criterion for optimal
statistical prediction [Shalizi et al., Phys. Rev. Lett. 93, 118701 (2004)],
does not distinguish between the spatial inhomogeneity of the ordered phase and
the dynamical inhomogeneity of the disordered phase. A modification in which
complexities of individual nodes are calculated yields vanishing complexity
values for networks in the ordered and critical regimes and for highly
disordered networks, peaking somewhere in the disordered regime. Individual
nodes with high complexity are the ones that pass the most information from the
past to the future, a quantity that depends in a nontrivial way on both the
Boolean function of a given node and its location within the network.Comment: 8 pages, 4 figure
The Predictive Value of Coronary Microvascular Dysfunction For Left Ventricular Reverse Remodelling in Dilated Cardiomyopathy
AIMS: to evaluate the degree of coronary microvascular dysfunction (CMD) in dilated cardiomyopathy (DCM) patients by cardiac magnetic resonance (CMR) first-pass perfusion parameters and to examine the correlation between myocardial perfusion and left ventricle reverse remodelling (LVRR).
METHODS: In this study, 94 DCM patients and 35 healthy controls matched for age and sex were included. Myocardial perfusion parameters, including upslope, time to maximum signal intensity (Time
RESULTS: With a median follow-up period of 12 months [interquartile range (IQR), 8-13], 41 DCM patients (44%) achieved LVRR. Compared with healthy controls, DCM patients presented CMD with reduced upslope, SI
CONCLUSIONS: CMD could be found in DCM patients and was more impaired in patients with non-LVRR than LVRR patients. Tim
The Potential Predictive Value of Cardiac Mechanics For Left Ventricular Reverse Remodelling in Dilated Cardiomyopathy
AIMS: Left ventricular reverse remodelling (LVRR) is an important objective of optimal medical management for dilated cardiomyopathy (DCM) patients, as it is associated with favourable long-term outcomes. Cardiac magnetic resonance (CMR) can comprehensively assess cardiac structure and function. We aimed to assess the CMR parameters at baseline and investigate independent variables to predict LVRR in DCM patients.
METHODS AND RESULTS: Nighty-eight initially diagnosed DCM patients who underwent CMR and echocardiography examinations at baseline were included. CMR parameters and feature tracking (FT) based left ventricular (LV) global strain (nStrain) and nStrain indexed to LV cardiac mass index (rStrain) were measured. The predictors of LVRR were determined by multivariate logistic regression analyses. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic performance of CMR parameters and were compared by the DeLong test. At a median follow-up time of 9 [interquartile range, 7-12] months, 35 DCM patients (36%) achieved LVRR. The patients with LVRR had lower LV volume, mass, LGE extent and stroke volume index (LVSVi) and higher left ventricular remodelling index (LVRI), nStrains, rStrains, and peak systolic strain rate (PSSR) in the longitudinal direction and rStrains in the circumferential direction at baseline (all P \u3c 0.05). In the multivariate logistic regression analyses, LVRI [per SD, odds ratio (OR) 1.79; 95% confidence interval (CI) 1.08-2.98; P = 0.024] and the ratio of global longitudinal peak strain (rGLPS) (per SD, OR 1.88; 95% CI 1.18-3.01; P = 0.008) were independent predictors of LVRR. The combination of LVSVi, LVRI, and rGLPS had a greater area under the curve (AUC) than the combination of LVSVi and LVRI (0.75 vs. 0.68), but not significantly (P = 0.09).
CONCLUSIONS: Patients with LVRR had a lower LV volume index, lower LVSV index, lower LGE extent, higher LVRI, and preserved myocardial deformation in the longitudinal direction at baseline. LVRI and rGLPS at baseline were independent determinants of LVRR
The predictive value of coronary microvascular dysfunction for left ventricular reverse remodelling in dilated cardiomyopathy
AimsTo evaluate the degree of coronary microvascular dysfunction (CMD) in dilated cardiomyopathy (DCM) patients by cardiac magnetic resonance (CMR) first-pass perfusion parameters and to examine the correlation between myocardial perfusion and left ventricle reverse remodelling (LVRR).MethodsIn this study, 94 DCM patients and 35 healthy controls matched for age and sex were included. Myocardial perfusion parameters, including upslope, time to maximum signal intensity (Timemax), maximum signal intensity (SImax), baseline signal intensity (SIbaseline), and the difference between maximum and baseline signal intensity (SImax−baseline) were measured. Additionally, left ventricular (LV) structure, function parameters, and late gadolinium enhancement (LGE) were also recorded. The parameters were compared between healthy controls and DCM patients. Univariable and multivariable logistic regression analyses were used to determine the predictors of LVRR.ResultsWith a median follow-up period of 12 months [interquartile range (IQR), 8–13], 41 DCM patients (44%) achieved LVRR. Compared with healthy controls, DCM patients presented CMD with reduced upslope, SIbaseline, and increased Timemax (all p < 0.01). Timemax, SImax, and SImax−baseline were further decreased in LVRR than non-LVRR group (Timemax: 60.35 [IQR, 51.46–74.71] vs. 72.41 [IQR, 59.68–97.70], p = 0.017; SImax: 723.52 [IQR, 209.76–909.27] vs. 810.92 [IQR, 581.30–996.89], p = 0.049; SImax−baseline: 462.99 [IQR, 152.25–580.43] vs. 551.13 [IQR, 402.57–675.36], p = 0.038). In the analysis of multivariate logistic regression, Timemax [odds ratio (OR) 0.98; 95% confidence interval (CI) 0.95–1.00; p = 0.032)], heart rate (OR 1.04; 95% CI 1.01–1.08; p = 0.029), LV remodelling index (OR 1.73; 95% CI 1.06–3.00; p = 0.038) and LGE extent (OR 0.85; 95% CI 0.73–0.96; p = 0.021) were independent predictors of LVRR.ConclusionsCMD could be found in DCM patients and was more impaired in patients with non-LVRR than LVRR patients. Timemax at baseline was an independent predictor of LVRR in DCM
Association between socioeconomic status and obesity in a Chinese adult population
BACKGROUND: Existing studies which regarding to the association between individual socioeconomic status (SES) and obesity are still scarce in developing countries. The major aim of this study is to estimate such association in an adult population which was drawn from an economically prosperous province of China. METHODS: Study population was determined by multilevel randomized sampling. Education and income were chosen as indicators of individual SES, general obesity and abdominal obesity were measured by body mass index (BMI) and waist circumference (WC). Descriptive statistical methods were used to depict overall and factor-specific distributions of general and abdominal obesity among 16,013 respondents. Two-step logistic regression models were fitted on gender basis. RESULTS: The age-and-sex adjusted rates of general overweight, general obesity, abdominal overweight and abdominal obesity in study population were 28.9% (95%CI: 27.9%-29.9%), 7.5% (95%CI: 7.0%-8.1%), 32.2% (95%CI: 31.2%-33.3%) and 12.3% (95%CI: 11.6%-13.1%), respectively. Based on model fitting results, a significant inverse association between education and obesity only existed in women, while in men, income rather than education was positively related to obesity. CONCLUSIONS: The atypical SES-obesity relationship we found reflected the on-going social economy transformation in affluent regions of China. High-income men and poorly-educated women were at higher risk of obesity in Zhejiang province, thus merit intense focuses
Recommended from our members
Epitaxial Growth of MgxCa1–xO on GaN by Atomic Layer Deposition
We demonstrate for the first time that a singlecrystalline epitaxial MgxCa1−xO film can be deposited on gallium nitride (GaN) by atomic layer deposition (ALD). By adjusting the ratio between the amounts of Mg and Ca in the film, a lattice matched MgxCa1−xO/GaN(0001) interface can be achieved with low interfacial defect density. High-resolution X-ray diffraction (XRD) shows that the lattice parameter of this ternary oxide nearly obeys Vegard’s law. An atomically sharp interface from cross-sectional transmission electron microscopy (TEM) confirmed the high quality of the epitaxy.High-temperature capacitance−voltage characterization showed that the film with composition Mg0.25Ca0.75O has the lowest interfacial defect density. With this optimal oxide composition, a Mg0.25Ca0.75O/AlGaN/GaN metal−oxide −semiconductor high-electron-mobility (MOS-HEMT) device was fabricated. An ultrahigh on/off ratio of 1012 and a near ideal SS of 62 mV/dec were achieved with this device.Chemistry and Chemical Biolog
Reliability of Transcriptional Cycles and the Yeast Cell-Cycle Oscillator
A recently published transcriptional oscillator associated with the yeast cell cycle provides clues and raises questions about the mechanisms underlying autonomous cyclic processes in cells. Unlike other biological and synthetic oscillatory networks in the literature, this one does not seem to rely on a constitutive signal or positive auto-regulation, but rather to operate through stable transmission of a pulse on a slow positive feedback loop that determines its period. We construct a continuous-time Boolean model of this network, which permits the modeling of noise through small fluctuations in the timing of events, and show that it can sustain stable oscillations. Analysis of simpler network models shows how a few building blocks can be arranged to provide stability against fluctuations. Our findings suggest that the transcriptional oscillator in yeast belongs to a new class of biological oscillators
ABO genotype alters the gut microbiota by regulating GalNAc levels in pigs.
peer reviewedThe composition of the intestinal microbiome varies considerably between individuals and is correlated with health1. Understanding to what extend and how host genetics contributes to this variation is paramount yet has proven difficult as few associations have been replicated, particularly in humans2. We herein study the effect of host genotype on the composition of the intestinal microbiota in a large mosaic pig population. We show that, under conditions of exacerbated genetic diversity and environmental uniformity, microbiota composition and abundance of specific taxa are heritable. We map a quantitative trait locus affecting the abundance of Erysipelotrichaceae species and show that it is caused by a 2.3-Kb deletion in the N-acetyl-galactosaminyl-transferase gene underpinning the ABO blood group in humans. We show that this deletion is a ≥3.5 million years old trans-species polymorphism under balancing selection. We demonstrate that it decreases the concentrations of N-acetyl-galactosamine in the gut thereby reducing the abundance of Erysipelotrichaceae that can import and catabolize N-acetyl-galactosamine. Our results provide very strong evidence for an effect of host genotype on the abundance of specific bacteria in the intestine combined with insights in the molecular mechanisms that underpin this association. They pave the way towards identifying the same effect in human rural populations
Aridity-driven shift in biodiversity–soil multifunctionality relationships
From Springer Nature via Jisc Publications RouterHistory: received 2021-01-07, accepted 2021-08-12, registration 2021-08-25, pub-electronic 2021-09-09, online 2021-09-09, collection 2021-12Publication status: PublishedFunder: National Natural Science Foundation of China (National Science Foundation of China); doi: https://doi.org/10.13039/501100001809; Grant(s): 31770430Abstract: Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …