Epitaxial Growth of MgxCa1–xO on GaN by Atomic Layer Deposition

Abstract

We demonstrate for the first time that a singlecrystalline epitaxial MgxCa1−xO film can be deposited on gallium nitride (GaN) by atomic layer deposition (ALD). By adjusting the ratio between the amounts of Mg and Ca in the film, a lattice matched MgxCa1−xO/GaN(0001) interface can be achieved with low interfacial defect density. High-resolution X-ray diffraction (XRD) shows that the lattice parameter of this ternary oxide nearly obeys Vegard’s law. An atomically sharp interface from cross-sectional transmission electron microscopy (TEM) confirmed the high quality of the epitaxy.High-temperature capacitance−voltage characterization showed that the film with composition Mg0.25Ca0.75O has the lowest interfacial defect density. With this optimal oxide composition, a Mg0.25Ca0.75O/AlGaN/GaN metal−oxide −semiconductor high-electron-mobility (MOS-HEMT) device was fabricated. An ultrahigh on/off ratio of 1012 and a near ideal SS of 62 mV/dec were achieved with this device.Chemistry and Chemical Biolog

    Similar works