9 research outputs found
Table S2. Data sheet of human sites and all survey sites
Data sheet of human sites and all survey site
Table S1. Dated fossil occurrence of the four megafauna species used
Dated fossil occurrence of the four megafauna species use
Supporting information from Climate warming and humans played different roles in triggering Late Quaternary extinctions in east and west Eurasia
Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal–spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus <i>Mammuthus</i>), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming
The average percent of species lost (PSL) ± standard deviation of 252 key protected vertebrates of 2,365 counties in the mainland of China from approximately 1950 to 2000.
<p>a, b, and c indicate significantly different taxon groups (<i>p</i> < 0.05, ANOVA).</p
Linear interactive effects between temperature change (T), precipitation change (P), human population density change (H), species richness (B) on the proportion of species lost of all vertebrates, mammals, birds and amphibian and reptile (R&A).
<p>Linear interactive effects between temperature change (T), precipitation change (P), human population density change (H), species richness (B) on the proportion of species lost of all vertebrates, mammals, birds and amphibian and reptile (R&A).</p
Quantifying the effects of climate and anthropogenic change on regional species loss in China
<div><p>Human-induced environmental and climate change are widely blamed for causing rapid global biodiversity loss, but direct estimation of the proportion of biodiversity lost at local or regional scales are still infrequent. This prevents us from quantifying the main and interactive effects of anthropogenic environmental and climate change on species loss. Here, we demonstrate that the estimated proportion of species loss of 252 key protected vertebrate species at a county level of China during the past half century was 27.2% for all taxa, 47.7% for mammals, 28.8% for amphibians and reptiles and 19.8% for birds. Both human population increase and species richness showed significant positive correlations with species loss of all taxa combined, mammals, birds, and amphibians and reptiles. Temperature increase was positively correlated with all-taxa and bird species loss. Precipitation increase was negatively correlated with species loss of birds. Human population change and species richness showed more significant interactions with the other correlates of species loss. High species richness regions had higher species loss under the drivers of human environmental and climate change than low-richness regions. Consequently, ongoing human environmental and climate changes are expected to perpetuate more negative effects on the survival of key vertebrate species, particularly in high-biodiversity regions.</p></div
Quantifying the effects of climate and anthropogenic change on regional species loss in China - Fig 1
<p><b>Percent of species lost (PSL) in 2,365 counties in China for all species (A), mammals (B), birds (C), and amphibians & reptiles (D).</b> The color range indicates PSL; empty area indicates missing values.</p
Main effects of temperature change index (T), precipitation change index (P), human population density change index (H), species richness (B) on the proportion of species lost of all vertebrates, mammals, birds and amphibians and reptiles (R&A) from the 252 key protected species in mainland of China.
<p>Main effects of temperature change index (T), precipitation change index (P), human population density change index (H), species richness (B) on the proportion of species lost of all vertebrates, mammals, birds and amphibians and reptiles (R&A) from the 252 key protected species in mainland of China.</p