28 research outputs found

    Photosynthetic Bacterium \u3cem\u3eRhodopseudomonas palustris\u3c/em\u3e GJ-22 Induces Systemic Resistance Against Viruses

    Get PDF
    Photosynthetic bacteria (PSB) have been extensively used in agriculture to promote plant growth and to improve crop quality. Their potential application in plant disease management, however, is largely overlooked. In this study, the PSB strain Rhodopseudomonas palustris GJ-22 was investigated for its ability to induce resistance against a plant virus while promoting plant growth. In the field, a foliar spray of GJ-22 suspension protected tobacco plants against tobacco mosaic virus (TMV). Under axenic conditions, GJ-22 colonized the plant phyllosphere and induced resistance against TMV. Additionally, GJ-22 produced two phytohormones, indole-3-acetic acid and 5-aminolevulinic acid, which promote growth and germination in tobacco. Furthermore, GJ-22-inoculated plants elevated their immune response under subsequent TMV infection. This research may give rise to a novel biological agent with a dual function in disease management while promoting plant growth

    Tomato Chlorosis Virus Infection Facilitates \u3cem\u3eBemisia tabaci\u3c/em\u3e MED Reproduction by Elevating \u3cem\u3eVitellogenin\u3c/em\u3e Expression

    Get PDF
    Transmission of plant pathogenic viruses mostly relies on insect vectors. Plant virus could enhance its transmission by modulating the vector. Previously, we showed that feeding on virus infected plants can promote the reproduction of the sweet potato whitefly, Bemisia tabaci MED (Q biotype). In this study, using a whitefly-Tomato chlorosis virus (ToCV)-tomato system, we investigated how ToCV modulates B. tabaci MED reproduction to facilitate its spread. Here, we hypothesized that ToCV-infected tomato plants would increase B. tabaci MED fecundity via elevated vitellogenin (Vg) gene expression. As a result, fecundity and the relative expression of B. tabaci MED Vg was measured on ToCV-infected and uninfected tomato plants on days 4, 8, 12, 16, 20 and 24. The role of Vg on B. tabaci MED reproduction was examined in the presence and absence of ToCV using dietary RNAi. ToCV infection significantly increased B. tabaci MED fecundity on days 12, 16 and 20, and elevated Vg expression on days 8, 12 and 16. Both ovarian development and fecundity of B. tabaci MED were suppressed when Vg was silenced with or without ToCV infection. These combined results suggest that ToCV infection increases B. tabaci MED fecundity via elevated Vg expression

    Genome Sequencing of the Sweetpotato Whitefly \u3cem\u3eBemisia tabaci\u3c/em\u3e MED/Q

    Get PDF
    The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs (40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a foundation for future \u27pan-genomic\u27 comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management

    Iterative positive solutions for singular nonlinear fractional differential equation with integral boundary conditions

    Get PDF
    In this article, we study the existence of iterative positive solutions for a class of singular nonlinear fractional differential equations with Riemann-Stieltjes integral boundary conditions, where the nonlinear term may be singular both for time and space variables. By using the properties of the Green function and the fixed point theorem of mixed monotone operators in cones we obtain some results on the existence and uniqueness of positive solutions. We also construct successively some sequences for approximating the unique solution. Our results include the multipoint boundary problems and integral boundary problems as special cases, and we also extend and improve many known results including singular and non-singular cases

    MoPer1 is required for growth, conidiogenesis, and pathogenicity in Magnaporthe oryzae

    No full text
    Abstract Background GPI-anchoring is a prevalent Glycosylphosphatidylinositol modification process of posttranslational protein and is necessary for cell wall integrity in eukaryotes. To date, the function of GPI anchored-related protein remains unknown in phytopathogenic fungi. Results We here characterized the functions of MoPer1, a homolog of Saccharomyces cerevisiae ScPer1, from the rice blast fungus Magnaporthe oryzae. Transcriptional analysis demonstrated that MoPER1 was significantly upregulated during conidiation and infection. We found that the ∆Moper1 mutant was defective in conidiation and appressoria formation, and MoPer1 was involved in osmotic stress response and maintaining the cell wall integrity. Pathogenicity assays indicated that deletion of MoPEP1 significant reduction in virulence. Microscopic examination of the lesions revealed that the invasive hyphae of ∆Moper1 mutants were mostly restricted to the primary infected leaf sheath cells. Conclusions Our results indicated that MoPer1 is necessary for growth, conidiogenesis, and pathogenicity of the fungus. Our study facilitated to deep elucidate the pathogenic molecular mechanism of M. oryzae, and also provided a very helpful reference value for developing effective fungicide pointed at as the gene for target

    CgNis1’s Impact on Virulence and Stress Response in <i>Colletotrichum gloeosporioides</i>

    No full text
    Pepper anthracnose caused by Colletotrichum gloeosporioides infection is an important fungal disease and represents a serious threat to pepper yield and quality. At present, the pathogenic molecular mechanism of C. gloeosporioides is not very clear. In our study, we characterized the function of C. gloeosporioides CgNis1, a homolog of Magnaporthe oryzae MoNis1. We found that the ∆Cgnis1 mutant reduced the growth rate and was defective in conidiation. Although the rate of appressorium formation was unaffected, the germ tube was found to be abnormal. CgNis1 was shown to be involved in the H2O2 stress response and maintaining cell membrane permeability. The pathogenicity assays performed in this study indicated that the deletion of CgNIS1 is associated with virulence. Our results indicate that CgNis1 is necessary for the growth, development, and pathogenicity of the fungus. This work provides an in-depth analysis of the Nis1 protein, helps to enhance studies on pathogen-related molecular mechanisms, and provides a theoretical basis for the prevention and control of C. gloeosporioides in peppers

    Pumpkin powdery mildew disease severity influences the fungal diversity of the phyllosphere

    No full text
    Phyllosphere microbiota play a crucial role in plant-environment interactions and their microbial community and function are influenced by biotic and abiotic factors. However, there is little research on how pathogens affect the microbial community of phyllosphere fungi. In this study, we collected 16 pumpkin (Cucurbita moschata) leaf samples which exhibited powdery mildew disease, with a severity ranging from L1 (least severe) to L4 (most severe). The fungal community structure and diversity was examined by Illumina MiSeq sequencing of the internal transcribed spacer (ITS) region of ribosomal RNA genes. The results showed that the fungal communities were dominated by members of the Basidiomycota and Ascomycota. The Podosphaera was the most dominant genus on these infected leaves, which was the key pathogen responsible for the pumpkin powdery mildew. The abundance of Ascomycota and Podosphaera increased as disease severity increased from L1 to L4, and was significantly higher at disease severity L4 (P < 0.05). The richness and diversity of the fungal community increased from L1 to L2, and then declined from L2 to L4, likely due to the biotic pressure (i.e., symbiotic and competitive stresses among microbial species) at disease severity L4. Our results could give new perspectives on the changes of the leaf microbiome at different pumpkin powdery mildew disease severity

    Data_Sheet_1_Effects of dazomet combined with Rhodopsesudomonas palustris PSB-06 on root-knot nematode, Meloidogyne incognita infecting ginger and soil microorganisms diversity.doc

    No full text
    Root-knot nematode, Meloidogyne incognita is one of the most important nematodes affecting ginger crop. Rhodopseudomonas palustris PSB-06, as effective microbial fertilizer in increasing plant growth and suppressing soil-borne disease of many crops has been reported. The combination of R. palustris PSB-06 and dazomet treatments had been proved to inhibit root-knot nematode on ginger and increase ginger yield in our preliminary study. The field experiments were conducted to elucidate the reasons behind this finding, and followed by next-generation sequencing to determine the microbial population structures in ginger root rhizosphere. The results showed that combination of R. palustris PSB-06 and dazomet treatment had a synergetic effect by achieving of 80.00% reduction in root-knot nematode numbers less than soil without treatment, and also could increase 37.37% of ginger yield through increasing the contents of chlorophyll and total protein in ginger leaves. Microbiota composition and alpha diversity varied with treatments and growth stages, soil bacterial diversity rapidly increased after planting ginger. In addition, the combined treatment could increase diversity and community composition of probiotic bacteria, and decrease those of soil-borne pathogenic fungi comparing to the soil treated with dazomet alone. Meanwhile, it could also effectively increase soil organic matter, available phosphorus and available potassium. Analysis of correlation between soil microorganisms and physicochemical properties indicated that the soil pH value and available phosphorus content were important factors that could affect soil microorganisms structure at the harvest stage. The bacterial family was more closely correlated with the soil physicochemical properties than the fungal family. Therefore, the combination of R. palustris PSB-06 and dazomet was considered as an effective method to control root-knot nematode disease and improve ginger soil conditions.</p
    corecore