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Simple Summary: The sweet potato whitefly, Bemisia tabaci, is a polyphagous, global invasive
insect pest. It can damage vegetables and crops directly by feeding and indirectly by transmitting
plant viruses. Previously, we showed that virus infection of host plants can promote B. tabaci MED
(Q biotype) reproduction. Here, using a whitefly-tomato chlorosis virus (ToCV)-tomato system, we
investigated how ToCV modulates B. tabaci reproduction to facilitate its spread. ToCV infection
significantly increased whitefly fecundity and the relative expression of vitellogenin gene (Vg). Both
ovarian development and fecundity of whitefly were suppressed when Vg expression was silenced
with or without ToCV infection. These combined results reveal that ToCV infection increases B. tabaci
MED fecundity via elevated vitellogenin gene expression.

Abstract: Transmission of plant pathogenic viruses mostly relies on insect vectors. Plant virus
could enhance its transmission by modulating the vector. Previously, we showed that feeding
on virus infected plants can promote the reproduction of the sweet potato whitefly, Bemisia tabaci
MED (Q biotype). In this study, using a whitefly-Tomato chlorosis virus (ToCV)-tomato system,
we investigated how ToCV modulates B. tabaci MED reproduction to facilitate its spread. Here, we
hypothesized that ToCV-infected tomato plants would increase B. tabaci MED fecundity via elevated
vitellogenin (Vg) gene expression. As a result, fecundity and the relative expression of B. tabaci MED
Vg was measured on ToCV-infected and uninfected tomato plants on days 4, 8, 12, 16, 20 and 24. The
role of Vg on B. tabaci MED reproduction was examined in the presence and absence of ToCV using
dietary RNAi. ToCV infection significantly increased B. tabaci MED fecundity on days 12, 16 and
20, and elevated Vg expression on days 8, 12 and 16. Both ovarian development and fecundity of B.
tabaci MED were suppressed when Vg was silenced with or without ToCV infection. These combined
results suggest that ToCV infection increases B. tabaci MED fecundity via elevated Vg expression.

Keywords: Bemisia tabaci; fecundity; ovarian development; gene expression; RNA interference;
vitellogenin

1. Introduction

Plant viruses are a serious threat to sustainable agriculture [1–3]. The transmission
of plant pathogenic viruses mostly relies on insect vectors to the shared host plants [4–6].

Insects 2021, 12, 101. https://doi.org/10.3390/insects12020101 https://www.mdpi.com/journal/insects

https://www.mdpi.com/journal/insects
https://www.mdpi.com
https://orcid.org/0000-0002-2385-8224
https://doi.org/10.3390/insects12020101
https://doi.org/10.3390/insects12020101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/insects12020101
https://www.mdpi.com/journal/insects
https://www.mdpi.com/2075-4450/12/2/101?type=check_update&version=1


Insects 2021, 12, 101 2 of 12

The complex interaction between the plant pathogenic viruses, the insect vectors, and the
host plants could either directly or indirectly influence the abundance and distribution
of the insect vectors [7], thereby affecting the spread of such virus diseases. For example,
viruses could directly influence the insect vectors’ reproductive potential, impacting the
abundance of the insect vectors and then affecting the transmission efficiency of the viruses
or indirectly through the shared host plants modification. However, mechanisms, especially
at the molecular level, governing vector behaviors are lacking [8].

The sweet potato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is
a destructive insect pest causing millions to billions dollars of damages in agriculture
around the globe [9]. Bemisia tabaci could damage crops directly by feeding, or indirectly by
excreting “honeydew” as a substrate for fungus growing, or by transmitting viruses [10].
Middle East Asia Minor 1 (MEAM1, previously known as the B biotype) and Mediterranean
(MED, previously known as the Q biotype) are the two most devastating and invasive B.
tabaci cryptic species worldwide. There are more than 200 plant viruses transmitted by
B. tabaci causing severe yield reduction [11–13]. B. tabaci and its associated plant viruses
have caused substantial crop losses ranging from 20 to 100% [14] with increasing control
costs [15]. Among these plant viruses, tomato chlorosis virus (ToCV, genus Crinivirus,
family Closteroviridae) is a globally distributed, rapidly-spread virus [16]. ToCV is semi-
persistently transmitted by B. tabaci with incidences of up to 100% on tomato plants [17,18].
Because of a higher virus acquisition and accumulation rate and a better performance
(e.g., fecundity) on ToCV infected tomato plants than other cryptic species, B. tabaci MED
has been suggested to account for the rapid spread of ToCV [16]. Since no commercial
ToCV-resistant cultivar has been identified in tomato now [19], control of the whitefly
vector is critical in ToCV control in tomato. Deciphering the mechanism of ToCV mediating
whitefly reproduction could help understand ToCV epidemiology and develop novel and
effective control methods.

Such interaction has been suggested in a whitefly-virus-tomato system, in which B.
tabaci MED fecundity was increased when feeding on ToCV-infected tomato plants [16].
Similarly, when infected with ToCV, vitellogenin (Vg) was the most differentially expressed
gene in B. tabaci MEAM1 [20]. Vitellogenin, a precursor of the major yolk protein in most
oviparous species and invertebrates, is synthesized mainly by the fat body, then secreted
into the hemolymph and absorbed by the growing oocytes through receptor-mediated
endocytosis, and finally served as the nutrients for developing embryos [21–23]. Such
differential expression suggests Vg is a key factor in ToCV mediated whitefly reproduction,
however, the mechanism is not clear.

Our goal here is to investigate how ToCV modulates whitefly reproduction. In this
study, we hypothesized that ToCV-infected tomato plants would increase whitefly fecundity
via elevated vitellogenin expression. To test this hypothesis, we (1) documented B. tabaci
MED fecundity on ToCV-infected and uninfected tomato plants on days 4, 8, 12, 16, 20 and
24; (2) measured the relative expression of B. tabaci MED vitellogenin on ToCV-infected and
uninfected tomato plants on days 4, 8, 12, 16, 20 and 24; and finally, (3) examined the role
of vitellogenin on B. tabaci MED reproduction in the presence and absence of ToCV using
dietary RNAi.

2. Materials and Methods
2.1. Host Plants and Whitefly Rearing

Tomato plants (Solanum lycopersicum, Zuanhongmeina, Institute of Vegetable, Hunan
Academy of Agricultural Sciences) were kept in whitefly-proof screen-cages in a greenhouse
at L16: D8, 25 ± 1 ◦C, and R.H. 60 ± 10%. To generate ToCV infected tomato plants, 0.5 mL
ToCV infectious cDNA agro clone was injected into the three-true-leaf stage tomato plants.
Both visual (leaf chlorosis) and molecular (RT-PCR) inspections were conducted to confirm
the viral infection [9].

Bemisia tabaci MED was collected originally from infested poinsettia (Euphorbia pul-
cherrima) in Beijing, China in 2009, and maintained on tomato plants in whitefly-proof
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screen-cages at L14: D10, 25 ± 1 ◦C, and 60 ± 10% R.H [24].The purity of Bemisia tabaci
MED population was monitored every month based on the mitochondrial cytochrome oxidase
I (mtCOI) gene [25,26].

2.2. Whitefly Fecundity on ToCV-Infected and Uninfected Tomato Plants

Newly enclosed female whiteflies were collected and transferred onto either ToCV-infected
or uninfected tomato plants. Each whitefly was contained in one clip-cage (Figure 1A) attached
to one leaf (Figure 1B). There were five clip-cages on each plant (Figure 1C, attached to the
second to fifth leaf from each branch top). A Leica M205C stereomicroscope (Wetzlar, Ger-
many) was used to determine the sex of whitefly by observing the tail tip of the whiteflies
(Figure 1D). The number of eggs in each clip-cage were counted under the stereomicroscope
every 4 days for 24 days. The whitefly with its clip-cage was then transferred to a new plant
after each count. Infected whiteflies were kept being transferred to the infected tomato
plant, whereas the uninfected ones were transferred to the uninfected plants as control. The
mortality of whiteflies was monitored every day after the first transfer. Thirty replicated
clip-cages were made for infected and uninfected tomato plants, respectively.

Figure 1. Experimental setup. (A) Clip-cage; (B) A female whitefly was contained in one clip-cage attached to one tomato
abaxial leaf; (C) Five clip-cages in which a female whitefly respectively attached to tomato plant; (D) Female and male
whiteflies; (E) Feeding chamber, dsRNA is contained between two layers of parafilm in the end of glass feeding tube. After
whiteflies are released into the other end of the tube, the tube is sealed with a black cotton plug, covered with tinfoil, and
oriented with the parafilm-covered end toward a light source about 0.5 m away in whitefly rearing room for feeding 48 h.

2.3. Whitefly Vg Expression on ToCV-Infected and Uninfected Tomato Plants

Approximately 500 newly emerged whitefly adults were placed on ToCV-infected
and uninfected tomato plants, respectively. We found the developmental period for B.
tabaci was 15 to 20 days in tomato plants when incubated in the whitefly rearing room.
Whiteflies were transferred to new ToCV-infected or uninfected tomato plants every 12
days to avoid the newly eclosed B. tabaci influence. Whiteflies with a series of feeding time
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(4, 8, 12, 16, 20, 24 days) were collected as samples, with 30 individuals in each and there
were 3 biological replicates.

Total RNA was extracted from each sample by LIFE 15596-026 TRIzol® Reagent (Life
Technologies, Beijing, China). The concentration and purity of RNA were measured by
NanoDrop 2000 (Thermo Fisher Scientific, Beijing, China) and 200 ng of which was used
to synthesize the first strand of cDNA for qRT-PCR by using TransScript All-in-One First-
Strand cDNA synthesis SuperMix for qPCR (One-Step gDNA Removal) kit (TransGen
Biotech, Beijing, China) in accordance with the manufacturer’s instructions. Corresponding
qPCR primers were designed according to the Vg sequence, and qRT-PCR was carried out
on qTOWER3G qPCR system (Analytik Jena, Jena, Germany) by using TransStart Green
qPCR SuperMix UDG kit (TransGen Biotech, Beijing, China). The first strand of cDNA
was used as the template, and the “qPCR Vg-F” and “qPCR Vg-R” in Table 1 were used as
specific primers. All reactions were performed in three technical replicates. Normalized
gene expression was calculated using the 2−∆∆CT method [27] with Actin and EF-1α as the
reference gene (Table 1) [16,28]. There were 9 replicates in each treatment, with 3 biological
replicates and 3 technical replicates.

Table 1. Primers used in this study.

Gene Primer Sequence (5′-3′) *

Actin F: CGCTGCCTCCACCTCATT
R: ACCGCAAGATTCCATACCC

EF-1α
F: TAGCCTTGTGCCAATTTCCG
R: CCTTCAGCATTACCGTCC

qPCR Vg F: CTTCTCCGCTGCTTTCTT
R: TGTTGGCGTATTTGTTGG

dsGFP F: TAATACGACTCACTATAGGGTTCAGTGGAGAGGGTGAAGGT
R: TAATACGACTCACTATAGGGTGTGTGGACAGGTAATGGTTG

dsVg F: ATTCTCTAGAAGCTTAATACGACTCACTATAGGGTCTGTGATGCCTTAGTT
R: ATTCTCTAGAAGCTTAATACGACTCACTATAGGGCTCTCTTGAGGTTTTGT

* F denotes forward primer; R denotes reverse primer.

2.4. The Role of Vg on Whitefly Reproduction in the Presence and Absence of ToCV
2.4.1. dsRNA Synthesis

The Vg and GFP gene sequences were amplified by Phanta® Max Super-Fidelity
DNA Polymerase kit (Vazyme Biotech, Nanjing, China). The cDNA of B. tabaci as the
template, dsVg-F/dsVg-R and dsGFP-F/dsGFP-R containing the T7 RNA polymerase
promoter sequence at the 5′ end as specific primers (Table 1). The PCR amplification
procedure was as follows: 95 ◦C for 3 min; 35 cycles of 95 ◦C for 15 s, 60 ◦C for 15 s,
72 ◦C for 1 min; and 72 ◦C for 5 min. PCR products were detected by 1.5% agarose gel
electrophoresis and purified using an EasyPure PCR product purification kit (Huayueyang
Biotechnology, Beijing, China). The products were sent to Sangon Biotech (Shanghai, China)
for sequencing. The target PCR products were amplified and purified as a template for
synthesizing dsRNA, following T7 RiboMAXTM Express RNAi System (Promega, Madison,
WI, USA) in line with the manufacturer’s instructions. Then the concentration and purity
were detected by NanoDrop 2000, and 6 µL dsRNA was detected using 1.5% agarose gel
electrophoresis to evaluate integrity. The dsRNA was stored at −80 ◦C for further RNAi.

2.4.2. Dietary RNAi on Whitefly Vg Expression

After fed on either ToCV-infected or uninfected tomato plants for 6 days, approxi-
mately 150 whiteflies were carefully transferred into a feeding chamber with 300 µL dsRNA
solution (dsVg or dsGFP: 300 ng/µL; solution: 15% wt/vol sucrose), respectively [29]. Three
replications were conducted for each treatment. The twelve feeding chambers were en-
veloped by tinfoil, then incubated in the whitefly rearing room for 48 h (Figure 1E). Then
RNA was extracted from 30 female whiteflies to detect the expression level of Vg after
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dsRNA treatment. The remaining whiteflies were used for the ovarian development check
and fecundity test.

2.4.3. Dietary RNAi on the Development of Whitefly Ovaries

After dsRNA treatment, 15 ToCV-infected and 15 uninfected whiteflies were taken
to dissect ovaries. The developmental phases of the oocytes in the ovaries were assessed
with a stereomicroscope (Leica, M205C). The maturity of oocytes was determined by the
morphological characteristics and the level of yolk content [30,31]. The number of mature
oocytes in each treatment was documented.

2.4.4. Dietary RNAi on Whitefly Fecundity

Thirty remaining whiteflies were taken from each tube and then transferred individu-
ally into clip-cages on either ToCV-infected or uninfected tomato plants. There was one
clip-cage per leaf containing one whitefly. The number of eggs laid by each whitefly was
counted with a stereomicroscope after 7 days.

2.5. Data Analysis

IBM SPSS Statistics 21 (SPSS Inc., Chicago, IL, USA) was used for statistical analysis.
Repeated measures ANOVA was conducted to compare the fecundity and Vg expression
levels in ToCV-infected and non-infected whiteflies (whiteflies were collected from the
same population, with the same development time and individual size). Independent
samples t-test was also used to compare the silencing efficiency of RNAi, the effect of RNAi
on the number of mature oocytes and fecundity in ToCV-infected and uninfected whiteflies.
The alpha value (<0.05) was used as a level for judging significance, and a range of alpha
from 0.05 to 0.06 was also acceptable for significance.

3. Results
3.1. Whitefly Fecundity on ToCV-Infected and Uninfected Tomato Plants

During the observation, the number of eggs laid by whitefly increased and reached
the peak on 12 d, then decreased gradually (Table 2). Whitefly fecundity was signifi-
cantly increased on ToCV-infected tomato plants on 12 d (F (58) = 9.920, p < 0.001), 16 d
(F (58) = 5.005, p =0.012) and 20 d (F (58) = 0.310, p = 0.002). There was no difference on
whitefly fecundity on 4 d (F (58) = 0.097, p = 0.22), 8 d (F (58) = 8.328, p = 0.078) and 24 d
(F (58) = 1.269, p = 0.523) (Figure 2A).

Table 2. Number of eggs laid by whitefly on tomato plants.

Treatments
Time

4 d 8 d 12 d 16 d 20 d 24 d

ToCV-infected 7.0 ± 8.668 19.0 ± 1.988 88.0 ± 8.668 33.0 ± 3.016 24.0 ± 1.627 14.0 ± 1.314
Uninfected 6.0 ± 0.931 15.0 ± 1.192 46.0 ± 2.441 25.0 ± 1.315 17.0 ± 1.181 13.0 ± 0.965

Note: the values are mean ± SE.

3.2. Vg Relative Expression Level of Whitefly on ToCV-Infected and Uninfected Tomato Plants

The relative Vg expression level was raised while reproduction, reached the peak on
12 d. The expression level started to decline on 16 d, and back to the initial level on 24 d
(Table 3). The Vg expression level was significantly higher in whiteflies from infected plants
than in uninfected plants on 8 d (F (4) = 5.699, p = 0.057), 12 d (F (4) = 3.591, p < 0.001) and
16 d (F (4) = 4.230, p < 0.001), while no significant difference was found in other days (day 4,
none F and p value; day 20, F (4) = 3.605, p = 0.392; day 24, F (4) = 2.478, p = 0.075) (Figure 2B).
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Figure 2. Temporal change of whitefly fecundity and Vg expression on ToCV-infected and uninfected
tomato plants. (A) represents the dynamic change of egg numbers within 24 days (Mean ± SE,
n = 30); (B) represents the dynamic change of relative Vg expression within 24 days (Mean ± SE,
n = 30). The asterisks above bars mean significant difference: * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.
Data were pooled with 3 replications.

Table 3. Vg relative expression level of whitefly.

Treatments
Time

4 d 8 d 12 d 16 d 20 d 24 d

ToCV-infected 1.000 ± 0.000 1.541 ± 0.093 10.840 ± 0.537 4.290 ± 0.037 1.656 ± 0.303 1.248 ± 0.002
Uninfected 1.000 ± 0.000 1.380 ± 0.030 6.995 ± 0.253 2.640 ± 0.117 1.353 ± 0.089 1.184 ± 0.003

Note: the values are mean ± SE.

3.3. The Role of Vg on Whitefly Reproduction in the Presence and Absence of ToCV
3.3.1. Vg Expression on Whiteflies with Dietary RNAi

The expression level of Vg after feeding with dsVg was significantly decreased com-
pared to dsGFP, indicating Vg was silenced by 48 h dsRNA oral ingestion. Vg expression
was decreased by 60.83% on average of whitefly from ToCV-infected plants (SE = 0.011,
t (4) = 36.327, p < 0.001), while 70.75% of whitefly from non-infected plant after RNAi
(SE = 0.017, t (4) = 62.842, p < 0.001) (Figure 3A). The silencing effect of whitefly was better
on uninfected plants than on infected ones (t (4) = 4.918, p = 0.008). This phenomenon
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could result from B. tabaci having higher Vg expression from ToCV-infected plants than
uninfected before RNAi treatments.

Figure 3. The role of Vg on whitefly reproduction in the presence and absence of ToCV. In dietary
RNAi, B. tabaci MED was fed with dsGFP and dsVg on ToCV-infected and uninfected tomato plants.
After 48 h, relative Vg expression (Mean ± SE, n = 30, A), the number of mature oocytes (Mean ± SE,
n = 15, B), and eggs (Mean ± SE, n = 30, C) were documented. The asterisks above bars mean
significant differences (*** p ≤ 0.001). Data were pooled from 3 biological replications.

3.3.2. Development of Whitefly Ovaries with Dietary RNAi

ToCV infection increased the number of mature oocytes, while dsVg decreased it.
The number of mature oocytes in whitefly on ToCV-infected plants (dsGFP: Mean = 5.000,
SE = 0.307; dsVg: Mean = 2.000; SE = 0.243; Figure 4A,B) was significantly more than that
on uninfected plants (dsGFP: Mean = 3.000, SE = 0.330; dsVg: Mean = 1.000; SE = 0.223;
Figure 4C,D) (fed with dsVg: t (28) = 3.035, p = 0.005; dsGFP: t (28) = 2.810, p = 0.009),
indicating faster ovary development. Whiteflies fed with dsVg possessed significantly
less mature oocytes than dsGFP treatments no matter on plants infected with ToCV or not
(uninfected: t (28) = 5.187, p < 0.001; infected: t (28) = 5.965, p < 0.001) (Figure 3B).



Insects 2021, 12, 101 8 of 12

Figure 4. Ovary development in whiteflies that fed on ToCV-infected and uninfected plants post-dietary RNAi. Ovaries
from (A) viruliferous whitefly after dsGFP ingestion, (B) viruliferous whitefly after dsVg ingestion, (C) non-viruliferous
whitefly after dsGFP ingestion, and (D) non-viruliferous whitefly after dsVg ingestion. Scale bar: 0.10 mm.

3.3.3. Whitefly Fecundity with Dietary RNAi

Whitefly fecundity was increased by ToCV infection, but decreased by dsVg. In non-
viruliferous whitefly, the number of eggs after fed with dsVg (mean = 24.000, SE = 0.793)
was significantly lower than the egg number with dsGFP (mean = 40.000, SE = 0.584)
(t (58) = 15.941, p < 0.001). In viruliferous whitefly, the egg number after dsVg treatments
(mean = 28.000, SE = 0.839) was also significantly lower than with dsGFP (mean = 45.000,
SE = 0.616) (t (58) = 16.623, p < 0.001). The number of eggs laid by viruliferous whitefly
was significantly higher than that non-viruliferous whitefly (fed with dsVg: t (58) = 3.119,
p = 0.003; dsGFP: t (58) = 6.125, p < 0.001) (Figure 3C).

4. Discussion
4.1. ToCV Infection Facilitated the Whitefly Reproduction

The spread of a vector-borne plant pathogenic virus mainly relies on the performance
and behavior of the vectors, usually insects. Such viruses should be expected to be adap-
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tive to affect the physiological or behavioral characteristics of their insect vectors either
direct through modifying the performance and behavior of the vectors or indirect through
manipulating their shared host plants to make them more attractive or acceptable to their
vectors to improve the viruses transmission and benefit in viruses fitness [8].

In whiteflies, such effects could be different among different biotypes or infected by
different viruses, requiring investigations case by case (reviewed by Eigenbrode et al.,
2018, supplemental Table 1). The reproduction has been increased in another biotype
whitefly (biotype B) when infected by tobacco curly shoot virus (TbCSV) or tomato yellow
leaf curl China virus (TYLCCNV) [32], so as an acceleration of ovarian development on
TYLCCNV [33]. However, when infected with ToCV, the B. tabaci MEAM1 shows no
preference between the ToCV-infected plant and uninfected plants, and the oviposition
and survival rate are decreased. This results can explain why B. tabaci MED has replaced
MEAM1 in the past decade in China. However, ToCV infection did not influence the
number of eggs laid by Trialeurodes vaporariorum [16,34,35]. Previous research confirmed
the B. tabaci MED fecundity affected by the semi-persistent virus, ToCV [16,36,37], which is
consistent with our observation. The ToCV-infected tomato plants could accelerate B. tabaci
MED ovarian development and enhance their fecundity to increase the vector abundance,
and then promote the virus spread. Our findings confirm the key role of the B. tabaci
MED in the spread of ToCV, indicating the importance of whitefly control in the control of
ToCV [16]. The underlying mechanisms are actually important to develop new tools that
may be included in an integrated pest management program to control whiteflies.

4.2. ToCV Infection Facilitates Whitefly Reproduction through Elevating Vg Expression

Studies about the molecular mechanisms of these effects of viruses modulating their
vectors to facilitate their transmission are still rare. In our study, ToCV-infection increased
the Vg expression, along with the fecundity. Both ovarian development and fecundity
were suppressed when Vg expression was knocked down, indicating that the increase of
whitefly fecundity on ToCV-infected plants is consistent with the Vg gene. This correlation
could be either direct or indirect by the virus. The Vg expression could be directly increased
by the acquisition of the virus, or indirectly, the virus might mediate the plant quality
first. Nutrient change in the host plants could then induce the Vg expression, facilitating
the whitefly reproduction. It has been demonstrated that TYLCV could benefit whitefly
fecundity by altering the nutritional content of the host’s leaf tissue and phloem sap [38,39].
Evidence about these plant regulations to enhance vector performance has also been found
in other insect vector-virus systems, such as Barley yellow dwarf virus and Cucumber
mosaic virus with aphids [40,41], Tomato spotted wilt virus with thrips [42].

There was no evidence of direct interaction between ToCV and vitellogenin before.
ToCV is a semi-persistent and foregut-borne virus, and interestingly, the whiteflies fixed
on ToCV-infected plants showed the induced fecundity and vitellogenin gene expression.
The host modulate may be the main reason. The limitation of this research was that we
did not evaluate host nutrient status with and without ToCV infection, which need further
investigation. A previous transcriptome study about ToCV-infected whitefly found another
vitellogenin related gene, Vitellogenin-B (Bta15563) as one of the most down-regulated
genes after 24 h [20]. The effect of ToCV on the expression of vitellogenin related genes
might be different along with the infectious stages. In the meantime, other differential
expressed genes were also been identified in this previous study, suggesting other potential
genes associated with whitefly vitellogenin or reproduction-related pathways during
ToCV infection.

4.3. RNAi on Vg as a New Approach in ToCV/Whitefly Control

Understanding the chemical and molecular mechanisms of such effects as viruses
influencing vectors has significant importance for evolutionary perspective on viruses’
adaptation to this complex interaction and applications, providing opportunities to improve
our current pest-control method or finding new ones. In our study, the dietary dsVg could
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effectively suppress the expression level of Vg in both ToCV-infected and uninfected
whitefly, reducing the fecundity of whiteflies. The population of whitefly is expected to be
suppressed. As ToCV cannot be transmitted to the host plants in the absence of B. tabaci
vectors, the transmission of virus should then be constrained. Chemical control of the
vector has not been demonstrated to be effective for controlling the disease caused by
ToCV [19]. RNAi technology has been an effective tool in functional genomics studies and
its application toward pest management is already close to reality [43]. Furthermore, RNAi
will be safer than any pesticide currently available in the registration because of the high
specificity, typically targeting a single gene [44]. The field of dietary RNAi is relatively new,
and many questions regarding the fate of dsRNA in the environment, effects on non-target
organisms, risk prediction, etc. still remain explored at this moment. The costs, efficiency,
benefits and risks of pesticidal RNAi must be considered while it moves from a theoretical
approach to being used as a practical tool [45].

5. Summary and Perspectives

In summary, this study shows that ToCV-infected tomato plants increases B. tabaci
fecundity by elevating Vg expression, providing an underlying molecular mechanism for
the fecundity of vector modulated by the plant pathogenic virus to facilitate their own
spread. A future study focusing on other differentially expressed genes during the ToCV
infection is warranted. Given that whitefly fecundity was significantly suppressed by
dietary RNAi, future research on new molecular target(s) could fundamentally reduce
whitefly abundance.
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