15 research outputs found

    Cloprostenol sodium improves reproductive performance of multiparous sows during lactation

    Get PDF
    This study aimed to determine the effect of prostaglandin F2α (PGF2α) analog (D-cloprostenol sodium and DL-cloprostenol sodium) administration on the milk yield of multiparous sows (MS) and piglet growth performance. In total, 320 Landrace×Yorkshire parturient MS were randomly divided into three groups on day 115 of pregnancy: without treatment (N = 50), with 75 μg D-cloprostenol sodium (N = 137), and with 200 μg DL-cloprostenol sodium (N = 133). After delivery, the sows treated with D-cloprostenol sodium and DL-cloprostenol sodium were randomly allocated into three subgroups, respectively: (i) no additional treatment after farrowing; (ii) administration of cloprostenol sodium at 3 h and 5 days after farrowing; and (iii) administration of cloprostenol sodium at 3 h, 5 days, and 10 days after farrowing. Cloprostenol sodium effectively induced sows to synchronize parturition approximately 23 h after administration and increased the daytime delivery rates (p < 0.05). Compared with DL-cloprostenol sodium, D-cloprostenol sodium shortened the farrowing duration and birth interval of sows for inducing farrowing (p < 0.05). Moreover, we observed that a single administration of both D-cloprostenol sodium and DL-cloprostenol sodium a day before delivery significantly reduced the rates of stillborn piglets type II in MS (p < 0.05). Compared to no treatment and single treatment with cloprostenol sodium, quartic treatments with cloprostenol sodium significantly increased the daily feed intake of MS, litter weight after weaning, and average daily gain of piglets (p < 0.05). Cloprostenol sodium improved the 21-day milk yield, with D-cloprostenol sodium showing the best effect, which increased lactation ability by 30.30% (176.72 kg vs. 135.63 kg) (p < 0.05). DL-cloprostenol sodium followed closely, increasing lactation ability by approximately 25.00% (169.71 kg vs. 135.63 kg) (p < 0.05). During lactation, sows administered with D-cloprostenol sodium observed increased serum prolactin levels. Compared to untreated sows, the sows administered with D-cloprostenol sodium and multiple DL-cloprostenol sodium visibly shortened the weaning-to-estrus interval (WEI) and weaning-to-service interval (WSI) (p < 0.05). Furthermore, quartic injections of D-cloprostenol sodium resulted in an 18 percentage point increase in the pregnancy rate of breeding sows compared to controls (82.61% vs. 64.58%) (p > 0.05). In summary, cloprostenol sodium could enhance the reproductive performance of MS, particularly in terms of lactation performance. Additionally, the effect of quartic injections of D-cloprostenol sodium was the most pronounced

    Vital Role of Synthesis Temperature in Co–Cu Layered Hydroxides and Their Fenton-like Activity for RhB Degradation

    No full text
    Cu and Co have shown superior catalytic performance to other transitional elements, and layered double hydroxides (LDHs) have presented advantages over other heterogeneous Fenton catalysts. However, there have been few studies about Co–Cu LDHs as catalysts for organic degradation via the Fenton reaction. Here, we prepared a series of Co–Cu LDH catalysts by a co-precipitation method under different synthesis temperatures and set Rhodamine B (RhB) as the target compound. The structure-performance relationship and the influence of reaction parameters were explored. A study of the Fenton-like reaction was conducted over Co–Cu layered hydroxide catalysts, and the variation of synthesis temperature greatly influenced their Fenton-like catalytic performance. The Co–Cut=65°C catalyst with the strongest LDH structure showed the highest RhB removal efficiency (99.3% within 30 min). The change of synthesis temperature induced bulk-phase transformation, structural distortion, and metal–oxygen (M–O) modification. An appropriate temperature improved LDH formation with defect sites and lengthened M–O bonds. Co–Cu LDH catalysts with a higher concentration of defect sites promoted surface hydroxide formation for H2O2 adsorption. These oxygen vacancies (Ovs) promoted electron transfer and H2O2 dissociation. Thus, the Co–Cu LDH catalyst is an attractive alternative organic pollutants treatment

    Vital Role of Synthesis Temperature in Co–Cu Layered Hydroxides and Their Fenton-like Activity for RhB Degradation

    No full text
    Cu and Co have shown superior catalytic performance to other transitional elements, and layered double hydroxides (LDHs) have presented advantages over other heterogeneous Fenton catalysts. However, there have been few studies about Co–Cu LDHs as catalysts for organic degradation via the Fenton reaction. Here, we prepared a series of Co–Cu LDH catalysts by a co-precipitation method under different synthesis temperatures and set Rhodamine B (RhB) as the target compound. The structure-performance relationship and the influence of reaction parameters were explored. A study of the Fenton-like reaction was conducted over Co–Cu layered hydroxide catalysts, and the variation of synthesis temperature greatly influenced their Fenton-like catalytic performance. The Co–Cut=65°C catalyst with the strongest LDH structure showed the highest RhB removal efficiency (99.3% within 30 min). The change of synthesis temperature induced bulk-phase transformation, structural distortion, and metal–oxygen (M–O) modification. An appropriate temperature improved LDH formation with defect sites and lengthened M–O bonds. Co–Cu LDH catalysts with a higher concentration of defect sites promoted surface hydroxide formation for H2O2 adsorption. These oxygen vacancies (Ovs) promoted electron transfer and H2O2 dissociation. Thus, the Co–Cu LDH catalyst is an attractive alternative organic pollutants treatment

    Primitive3D: 3D Object Dataset Synthesis from Randomly Assembled Primitives

    Full text link
    Numerous advancements in deep learning can be attributed to the access to large-scale and well-annotated datasets. However, such a dataset is prohibitively expensive in 3D computer vision due to the substantial collection cost. To alleviate this issue, we propose a cost-effective method for automatically generating a large amount of 3D objects with annotations. In particular, we synthesize objects simply by assembling multiple random primitives. These objects are thus auto-annotated with part labels originating from primitives. This allows us to perform multi-task learning by combining the supervised segmentation with unsupervised reconstruction. Considering the large overhead of learning on the generated dataset, we further propose a dataset distillation strategy to remove redundant samples regarding a target dataset. We conduct extensive experiments for the downstream tasks of 3D object classification. The results indicate that our dataset, together with multi-task pretraining on its annotations, achieves the best performance compared to other commonly used datasets. Further study suggests that our strategy can improve the model performance by pretraining and fine-tuning scheme, especially for the dataset with a small scale. In addition, pretraining with the proposed dataset distillation method can save 86\% of the pretraining time with negligible performance degradation. We expect that our attempt provides a new data-centric perspective for training 3D deep models.Comment: CVPR 202

    Pipeline versus Tubridge in the treatment of unruptured posterior circulation aneurysms

    No full text
    Abstract Background To compare the safety and efficacy of pipeline embolization device (PED) and Tubridge flow diverter (TFD) for unruptured posterior circulation aneurysms. Methods Posterior aneurysm patients treated with PED or TFD between January, 2019, and December, 2021, were retrospectively reviewed. Patients’ demographics, aneurysm characteristics, treatment details, complications, and follow-up information were collected. The procedural-related complications and angiographic and clinical outcome were compared. Results A total of 107 patients were involved; PED was applied for 55 patients and TFD for 52 patients. A total of 9 (8.4%) procedural-related complications occurred, including 4 (7.3%) in PED group and 5 (9.6%) in TFD group. During a mean of 10.3-month angiographic follow-up for 81 patients, complete occlusion was achieved in 35 (85.4%) patients in PED group and 30 (75.0%) in TFD group. The occlusion rate of PED group is slightly higher than that of TFD group. A mean of 25.0-month clinical follow-up for 107 patients showed that favorable clinical outcome was achieved in 53 (96.4%) patients in PED group and 50 (96.2%) patients in TFD group, respectively. No statistical difference was found in terms of procedural-related complications (p = 0.737), occlusion rate (p = 0.241), and favorable clinical outcome (0.954) between groups. Conclusions The current study found no difference in complication, occlusion, and clinical outcome between PED and TFD for unruptured PCAs

    Evaluation of Fairness of Urban Park Green Space Based on an Improved Supply Model of Green Space: A Case Study of Beijing Central City

    Get PDF
    Urban park green space (UPGS) plays an important role in providing ecological and social benefits. However, in many large cities with rapid economic development, the supply of UPGS is unfairly distributed, and there is a severe mismatch between its supply and residents’ demand. Taking the Beijing central city as an example, this study aims to develop a fairness assessment model to quantify the fairness of UPGS distribution and the matching relationships between supply and demand for UPGS. To achieve the aims of the study, we improved the supply model of UPGS by integrating three factors: the number of UPGS, the service capacity of UPGS, and the quality of UPGS in the Beijing central city. Subsequently, we evaluated the spatial fairness and social fairness of the supply of UPGS using the Gini coefficient. Then, we used the number of residents in the sub-district to characterize the intensity of residents’ needs and quantitatively analyzed the spatial matching relationship between the supply of UPGS and residents’ demand. The results show that: (a) The improved supply model of UPGS can measure the supply of UPGS of different types in a more detailed way. (b) The per capita supply of UPGS is unevenly distributed among the six urban districts of Beijing, which may lead to a sense of unfairness among residents. While residents in Haidian District (Gini = 0.649) may have the highest sense of unfairness, followed by those in Fengtai (Gini = 0.505), Dongcheng (Gini = 0.410), Xicheng (Gini = 0.392), and Chaoyang District (Gini = 0.225). (c) The matching relationship between the supply of UPGS and the needs of different social groups is not ideal, especially the spatial matching relationship between the needs of the elderly and the supply of UPGS. This study can be used as a reference for supporting decision making in optimizing UPGS and providing a reference for fine urban management

    Phys. Chem. Chem. Phys.

    No full text
    rGO-CdS-H2W12 nanocomposite film was successfully fabricated by a layer-by-layer self-assembly method. The composite film was characterized by techniques such as UV-Vis spectra, XPS, and AFM. The composite film showed high photoelectronic response under the illumination of sunlight. Both current-voltage curves and photocurrent transient measurements demonstrated that the photocurrent response of the rGO-CdS-H2W12 composite film was enhanced five-fold compared with CdS film. This can be attributed to the photoinduced electron transfer between CdS, H2W12 and rGO, which promotes the charge separation efficiency of CdS. The introduction of GO enhanced the charge separation and transportation. More importantly, various pollutants can be treated as electron donors, and can thus be degraded and produce hydrogen at the same time, at a low bias voltage under the irradiation of solar light.rGO-CdS-H2W12 nanocomposite film was successfully fabricated by a layer-by-layer self-assembly method. The composite film was characterized by techniques such as UV-Vis spectra, XPS, and AFM. The composite film showed high photoelectronic response under the illumination of sunlight. Both current-voltage curves and photocurrent transient measurements demonstrated that the photocurrent response of the rGO-CdS-H2W12 composite film was enhanced five-fold compared with CdS film. This can be attributed to the photoinduced electron transfer between CdS, H2W12 and rGO, which promotes the charge separation efficiency of CdS. The introduction of GO enhanced the charge separation and transportation. More importantly, various pollutants can be treated as electron donors, and can thus be degraded and produce hydrogen at the same time, at a low bias voltage under the irradiation of solar light

    <i>CaDHN5</i>, a Dehydrin Gene from Pepper, Plays an Important Role in Salt and Osmotic Stress Responses

    No full text
    Dehydrins (DHNs), as a sub-family of group two late embryogenesis-abundant (LEA) proteins, have attracted considerable interest owing to their functions in enhancing abiotic stress tolerance in plants. Our previous study showed that the expression of CaDHN5 (a dehydrin gene from pepper) is strongly induced by salt and osmotic stresses, but its function was not clear. To understand the function of CaDHN5 in the abiotic stress responses, we produced pepper (Capsicum annuum L.) plants, in which CaDHN5 expression was down-regulated using VIGS (Virus-induced Gene Silencing), and transgenic Arabidopsis plants overexpressing CaDHN5. We found that knock-down of CaDHN5 suppressed the expression of manganese superoxide dismutase (MnSOD) and peroxidase (POD) genes. These changes caused more reactive oxygen species accumulation in the VIGS lines than control pepper plants under stress conditions. CaDHN5-overexpressing plants exhibited enhanced tolerance to salt and osmotic stresses as compared to the wild type and also showed increased expression of salt and osmotic stress-related genes. Interestingly, our results showed that many salt-related genes were upregulated in our transgenic Arabidopsis lines under salt or osmotic stress. Taken together, our results suggest that CaDHN5 functions as a positive regulator in the salt and osmotic stress signaling pathways
    corecore