56 research outputs found

    Synchronization of reaction–diffusion Hopfield neural networks with s-delays through sliding mode control

    Get PDF
    Synchronization of reaction–diffusion Hopfield neural networks with s-delays via sliding mode control (SMC) is investigated in this paper. To begin with, the system is studied in an abstract Hilbert space C([–r; 0];U) rather than usual Euclid space Rn. Then we prove that the state vector of the drive system synchronizes to that of the response system on the switching surface, which relies on equivalent control. Furthermore, we prove that switching surface is the sliding mode area under SMC. Moreover, SMC controller can also force with any initial state to reach the switching surface within finite time, and the approximating time estimate is given explicitly. These criteria are easy to check and have less restrictions, so they can provide solid theoretical guidance for practical design in the future. Three different novel Lyapunov–Krasovskii functionals are used in corresponding proofs. Meanwhile, some inequalities such as Young inequality, Cauchy inequality, Poincaré inequality, Hanalay inequality are applied in these proofs. Finally, an example is given to illustrate the availability of our theoretical result, and the simulation is also carried out based on Runge–Kutta–Chebyshev method through Matlab

    Critical contributions of protein cargos to the functions of macrophage‑derived extracellular vesicles

    Get PDF
    Background Macrophages are highly plastic innate immune cells that play key roles in host defense, tissue repair, and homeostasis maintenance. In response to divergent stimuli, macrophages rapidly alter their functions and manifest a wide polarization spectrum with two extremes: M1 or classical activation and M2 or alternative activation. Extracellular vesicles (EVs) secreted from differentially activated macrophages have been shown to have diverse functions, which are primarily attributed to their microRNA cargos. The role of protein cargos in these EVs remains largely unexplored. Therefore, in this study, we focused on the protein cargos in macrophage-derived EVs. Results NaĂŻve murine bone marrow-derived macrophages were treated with lipopolysaccharide or interlukin-4 to induce M1 or M2 macrophages, respectively. The proteins of EVs and their parental macrophages were subjected to quantitative proteomics analyses, followed by bioinformatic analyses. The enriched proteins of M1-EVs were involved in proinflammatory pathways and those of M2-EVs were associated with immunomodulation and tissue remodeling. The signature proteins of EVs shared a limited subset of the proteins of their respective progenitor macrophages, but they covered many of the typical pathways and functions of their parental cells, suggesting their respective M1-like and M2-like phenotypes and functions. Experimental examination validated that protein cargos in M1- or M2-EVs induced M1 or M2 polarization, respectively. More importantly, proteins in M1-EVs promoted viability, proliferation, and activation of T lymphocytes, whereas proteins in M2-EVs potently protected the tight junction structure and barrier integrity of epithelial cells from disruption. Intravenous administration of M2-EVs in colitis mice led to their accumulation in the colon, alleviation of colonic inflammation, promotion of M2 macrophage polarization, and improvement of gut barrier functions. Protein cargos in M2-EVs played a key role in their protective function in colitis. Conclusion This study has yielded a comprehensive unbiased dataset of protein cargos in macrophage-derived EVs, provided a systemic view of their potential functions, and highlighted the important engagement of protein cargos in the pathophysiological functions of these EVs

    Entanglement of single-photons and chiral phonons in atomically thin WSe2_2

    Full text link
    Quantum entanglement is a fundamental phenomenon which, on the one hand, reveals deep connections between quantum mechanics, gravity and the space-time; on the other hand, has practical applications as a key resource in quantum information processing. While it is routinely achieved in photon-atom ensembles, entanglement involving the solid-state or macroscopic objects remains challenging albeit promising for both fundamental physics and technological applications. Here, we report entanglement between collective, chiral vibrations in two-dimensional (2D) WSe2_2 host --- chiral phonons (CPs) --- and single-photons emitted from quantum dots (QDs) present in it. CPs which carry angular momentum were recently observed in WSe2_2 and are a distinguishing feature of the underlying honeycomb lattice. The entanglement results from a "which-way" scattering process, involving an optical excitation in a QD and doubly-degenerate CPs, which takes place via two indistinguishable paths. Our unveiling of entanglement involving a macroscopic, collective excitation together with strong interaction between CPs and QDs in 2D materials opens up ways for phonon-driven entanglement of QDs and engineering chiral or non-reciprocal interactions at the single-photon level

    Interaction between Micro-Amplitude Vibration and Thrust Force in Ultrasonic-Vibration-Assisted Drilling of Glass-Fiber-Reinforced Plastics

    No full text
    This research intends to investigate the effect and potential of the ultrasonic vibration of tools for drilling glass-fiber-reinforced plastics (GFRPs), especially with the aim of minimizing the thrust force. As an important parameter to characterize the vibration intensity, the vibration amplitude has a significant effect on the thrust force in the ultrasonic-vibration-assisted drilling (UVD) of GFRPs. It has been observed that the thrust force also influences the vibration amplitude, which may eventually result in a failure of the vibration. In this study, a method for the in-process measurement of the vibration amplitude was introduced to enable the investigation of the interaction between the thrust force and vibration amplitude in UVD. It was investigated how variations of the thrust force and vibration amplitude influence each other from holistic and individual perspectives. The critical condition was identified to ensure a sufficient ultrasonic vibration effect during drilling. Additionally, UVD experiments with different vibration amplitudes were carried out. The interaction between thrust force and vibration amplitude in UVD was revealed. It can be concluded that the combination of a moderate thrust force, low vibration amplitude reduction ratio, and high vibration amplitude increases the thrust force reduction ratio and secondly that an excessive thrust force undermines the effect of ultrasonic vibration. This provides an in-depth understanding of the interaction between vibration and thrust force in UVD, and helps to further improve the effect of ultrasonic vibration

    Prediction of the Surface Roughness in Ultrasonic Vibration-Assisted Grinding of Dental Zirconia Ceramics Based on a Single-Diamond Grit Model

    No full text
    Ultrasonic vibration-assisted grinding (UVAG) is regarded as a superior method for the fabrication of ceramic dentures, due to its outstanding performance in hard and brittle materials’ machining. The surface roughness of dentures has a critical effect on the bonding and wear performance between dentures and natural teeth. Accomplishing the prediction of surface roughness will promote the application of UVAG in dental restoration significantly. However, the investigation about surface roughness modeling in the UVAG of ceramics is limited. In this study, a comprehensive surface roughness model was proposed with the consideration of the diamond grits’ random distribution, brittle fracture removal, and ultrasonic vibration characteristics. Based on the indentation fracture removal mechanism, the material removal process was modeled. Rayleigh’s probability density function was introduced to characterize the random distribution of the grits. Besides, the ultrasonic vibration was considered via the analysis of the single-diamond grit motion. Finally, the comprehensive model was developed with the consideration of all the diamond grits. Afterward, the verification experiments were carried out. The experimental results agreed well with the model predictions. Therefore, the comprehensive model can be applied to evaluate the surface roughness and can provide an in-depth understanding of the surface formation in the UVAG of ceramics

    Functional orthologs of honeybee CYP6AQ1 in stingless bees degrade the butenolide insecticide flupyradifurone

    No full text
    Flupyradifurone (FPF), a novel butenolide insecticide binding to nicotinic acetylcholine receptors (nAChRs), has been shown to be less acutely toxic to western honey bees (Apis mellifera) than other insecticides such as neonicotinoids sharing the same target-site. A previous study revealed that this is due to enhanced oxidative metabolism of FPF, mediated by three cytochrome P450 monooxygenases (P450s), including CYP6AQ1. Therefore, we followed a toxicogenomics approach and investigated the potential role of functional CYP6AQ1 orthologs in FPF metabolism from eight different bee species, including stingless bees (Tribe: Meliponini). We conducted a phylogenetic analysis on four stingless bee species, including Frieseomelitta varia, Heterotrigona itama, Melipona quadrifasciata and Tetragonula carbonaria to identify CYP6AQ1-like functional orthologs. Three non-Meliponini, but tropical bee species, i.e., Ammobates syriacus, Euglossa dilemma and Megalopta genalis were analyzed as well. We identified candidate P450s in all (neo)tropical species with greater than 61% and 67% predicted protein sequence identities when compared to A. mellifera CYP6AQ1 and Bombus terrestris CYP6AQ26, respectively. Heterologous expression in High Five insect cells of these functional orthologs revealed a common coumarin substrate profile and a preference for the O-debenzylation of bulkier substrates. Competition assays using the fluorescent probe substrate 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC) with these enzymes indicated inhibition of BOMFC metabolism by increasing concentrations of FPF. Furthermore, UPLC-MS/MS analysis revealed the capacity of all CYP6AQ1-like orthologs to metabolize FPF by hydroxylation in vitro at various levels, indicating a conserved FPF detoxification potential in different (neo)tropical bee species including Meliponini. This research, employing a toxicogenomics approach, provides important insights into the potential of stingless and other tropical bee species to detoxify FPF, and highlights the significance of investigating the detoxification mechanisms of insecticides in non-Apis bee species by molecular tools to inform risk assessment and conservation efforts

    Empirical Study of Coal Mine Safety Regulation in China

    No full text
    This article uses a VAR model to empirically test Chinese coal mine safety regulations based on a theoretical analysis of their outcomes. The results show that the mine safety regulations are effective over the long term, represented by the long-term drop in casualty rates per million tons of coal. This is offset in the short term by the adverse behavior of coal miners, meaning that regulatory institutions must make trade-offs between long-term and short-term effects. The empirical analysis also finds that increases in coal output will lower the casualty rate per million tons of coal in the short term, but increase it in the long term. Based on these empirical results, the paper offers policy recommendations for improving China's coal mine safety regulations.

    The Power of Words: A Study of How Search Contents Can Affect Financial Decisions

    No full text
    Search engines play an important role in providing us with the main information of our daily life. The research on the search behavior on the Internet enjoys greater and greater popularity, for the search behavior has been proved to affect our daily decisions in purchasing, traveling, and even defining beauty. However, there is still a lack of full appreciation of the relation between the search behavior itself in terms of the emotional meaning and the decisions thus generated. Therefore, this study was carried out to analyze the emotional meanings of 13,915 English words obtained from Google Trends and the profits gained from the US house market by automatic transactions and discovered that the emotional meanings of the search contents could modulate the financial decision with unsupervised machine learning methods

    Experimental Study of the Jetting Behavior of High-Viscosity Nanosilver Inks in Inkjet-Based 3D Printing

    No full text
    Inkjet printing of high-viscosity (up to 105 mPa·s) nanosilver inks is an interesting emerging technology to achieve the 3D fully printed fabrication of electronic products. The highly viscous force of the ink makes it impossible to achieve droplet ejection with the traditional piezoelectric-driven drop-on-demand inkjet method. In this study, a pneumatic needle jetting valve is adopted to provide sufficient driving force. A large number of high-viscosity inkjet printing tests are carried out, and the jetting behavior is recorded with a high-speed camera. Different jetting states are determined according to the recorded images, and the causes of their formation are revealed. Additionally, the effects of the operating pressure, preload angle, and fluid pressure on jetting states are elucidated. Furthermore, the jetting phase diagram is obtained with the characterization of the Reynolds number and the printable region is clarified. This provides a better understanding of high-viscosity inkjet printing and will promote the application of high-viscosity inkjet printing in 3D fully printed electronic products

    Simulation and Experimental Study of the Multisized Silver Nanoparticles Sintering Process Based on Molecular Dynamics

    No full text
    Multisized nanoparticles (MPs) are widely employed as electronic materials to form conductive patterns, benefitting from their excellent sintering properties and mechanical reliability. However, due to the lack of effective detection methods for the real-time sintering process, it is difficult to reveal the sintering behavior during the MPs sintering process. In this work, a molecular dynamics method is used to track the trajectory of silver atoms. The melting behavior of a single nanoparticle (SP) is first discussed. The structural evolution of equally sized nanoparticles (EPs) and unequally sized nanoparticles (UPs) during the sintering process is analyzed alongside morphology changes. It is proposed that the UPs sintering process benefits from the wetting behavior of small-sized nanoparticles on the surface of large-sized nanoparticles, and the sintering angle (θ) is proposed as an index to estimate the sintering result of UPs. Based on the works above, three basic sintering modes and one advanced sintering mode in the MP sintering process are analyzed emphatically in this paper, and the roles of different-sized nanoparticles in MPs are concluded from simulation and experimental results. This work provides theoretical support for conductive ink composition design and sintering process optimization
    • …
    corecore