11 research outputs found

    Programmable Hamiltonian engineering with quadratic quantum Fourier transform

    Full text link
    Quantum Fourier transform (QFT) is a widely used building block for quantum algorithms, whose scalable implementation is challenging in experiments. Here, we propose a protocol of quadratic quantum Fourier transform (QQFT), considering cold atoms confined in an optical lattice. This QQFT is equivalent to QFT in the single-particle subspace, and produces a different unitary operation in the entire Hilbert space. We show this QQFT protocol can be implemented using programmable laser potential with the digital-micromirror-device techniques recently developed in the experiments. The QQFT protocol enables programmable Hamiltonian engineering, and allows quantum simulations of Hamiltonian models, which are difficult to realize with conventional approaches. The flexibility of our approach is demonstrated by performing quantum simulations of one-dimensional Poincar\'{e} crystal physics and two-dimensional topological flat bands, where the QQFT protocol effectively generates the required long-range tunnelings despite the locality of the cold atom system. We find the discrete Poincar\'{e} symmetry and topological properties in the two examples respectively have robustness against a certain degree of noise that is potentially existent in the experimental realization. We expect this approach would open up wide opportunities for optical lattice based programmable quantum simulations.Comment: 10 pages, 5 figure

    Gravitational potential energy balance for the thermal circulation in a model ocean

    Get PDF
    Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 1420-1429, doi:10.1175/JPO2914.1.The gravitational potential energy balance of the thermal circulation in a simple rectangular model basin is diagnosed from numerical experiments based on a mass-conserving oceanic general circulation model. The vertical mixing coefficient is assumed to be a given constant. The model ocean is heated/cooled from the upper surface or bottom, and the equation of state is linear or nonlinear. Although the circulation patterns obtained from these cases look rather similar, the energetics of the circulation may be very different. For cases of differential heating from the bottom with a nonlinear equation of state, the circulation is driven by mechanical energy generated by heating from the bottom. On the other hand, circulation for three other cases is driven by external mechanical energy, which is implicitly provided by tidal dissipation and wind stress. The major balance of gravitational energy in this model ocean is between the source of energy due to vertical mixing and the conversion from kinetic energy at low latitudes and the sink of energy due to convection adjustment and conversion to kinetic energy at high latitudes.RXH and XZJ were supported by the National Science Foundation through Grant OCE0094807 to the Woods Hole Oceanographic Institution and the Van Alan Clark Chair of the Woods Hole Oceanographic Institution

    gjSOX9 Cloning, Expression, and Comparison with gjSOXs Family Members in <i>Gekko japonicus</i>

    No full text
    SOX9 plays a crucial role in the male reproductive system, brain, and kidneys. In this study, we firstly analyzed the complete cDNA sequence and expression patterns for SOX9 from Gekko japonicus SOX9 (gjSOX9), carried out bioinformatic analyses of physiochemical properties, structure, and phylogenetic evolution, and compared these with other members of the gjSOX family. The results indicate that gjSOX9 cDNA comprises 1895 bp with a 1482 bp ORF encoding 494aa. gjSOX9 was not only expressed in various adult tissues but also exhibited a special spatiotemporal expression pattern in gonad tissues. gjSOX9 was predicted to be a hydrophilic nucleoprotein with a characteristic HMG-Box harboring a newly identified unique sequence, “YKYQPRRR”, only present in SOXE members. Among the 20 SOX9 orthologs, gjSOX9 shares the closest genetic relationships with Eublepharis macularius SOX9, Sphacrodactylus townsendi SOX9, and Hemicordylus capensis SOX9. gjSOX9 and gjSOX10 possessed identical physicochemical properties and subcellular locations and were tightly clustered with gjSOX8 in the SOXE group. Sixteen gjSOX family members were divided into six groups: SOXB, C, D, E, F, and H with gjSOX8, 9, and 10 in SOXE among 150 SOX homologs. Collectively, the available data in this study not only facilitate a deep exploration of the functions and molecular regulation mechanisms of the gjSOX9 and gjSOX families in G. japonicus but also contribute to basic research regarding the origin and evolution of SOX9 homologs or even sex-determination mode in reptiles

    Two-Dimensional Chalcogenide Nanoplates as Tunable Metamaterials via Chemical Intercalation

    No full text
    New plasmonic materials with tunable properties are in great need for nanophotonics and metamaterials applications. Here we present two-dimensional layered, metal chalcogenides as tunable metamaterials that feature both dielectric photonic and plasmonic modes across a wide spectral range from the infrared to ultraviolet. The anisotropic layered structure allows intercalation of organic molecules and metal atoms at the van der Waals gap of the host chalcogenide, presenting a chemical route to create heterostructures with molecular and atomic precision for photonic and plasmonic applications. This marks a departure from a lithographic method to create metamaterials. Monochromated electron energy-loss spectroscopy in a scanning transmission electron microscope was used to first establish the presence of the dielectric photonic and plasmonic modes in M<sub>2</sub>E<sub>3</sub> (M = Bi, Sb; E = Se, Te) nanoplates and to observe marked changes in these modes after chemical intercalation. We show that these modal properties can also be tuned effectively by more conventional methods such as thickness control and alloy composition of the nanoplates

    Two-Dimensional Chalcogenide Nanoplates as Tunable Metamaterials via Chemical Intercalation

    No full text
    New plasmonic materials with tunable properties are in great need for nanophotonics and metamaterials applications. Here we present two-dimensional layered, metal chalcogenides as tunable metamaterials that feature both dielectric photonic and plasmonic modes across a wide spectral range from the infrared to ultraviolet. The anisotropic layered structure allows intercalation of organic molecules and metal atoms at the van der Waals gap of the host chalcogenide, presenting a chemical route to create heterostructures with molecular and atomic precision for photonic and plasmonic applications. This marks a departure from a lithographic method to create metamaterials. Monochromated electron energy-loss spectroscopy in a scanning transmission electron microscope was used to first establish the presence of the dielectric photonic and plasmonic modes in M<sub>2</sub>E<sub>3</sub> (M = Bi, Sb; E = Se, Te) nanoplates and to observe marked changes in these modes after chemical intercalation. We show that these modal properties can also be tuned effectively by more conventional methods such as thickness control and alloy composition of the nanoplates

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios

    CEPC Conceptual Design Report: Volume 2 - Physics & Detector

    No full text
    The Circular Electron Positron Collider (CEPC) is a large international scientific facility proposed by the Chinese particle physics community to explore the Higgs boson and provide critical tests of the underlying fundamental physics principles of the Standard Model that might reveal new physics. The CEPC, to be hosted in China in a circular underground tunnel of approximately 100 km in circumference, is designed to operate as a Higgs factory producing electron-positron collisions with a center-of-mass energy of 240 GeV. The collider will also operate at around 91.2 GeV, as a Z factory, and at the WW production threshold (around 160 GeV). The CEPC will produce close to one trillion Z bosons, 100 million W bosons and over one million Higgs bosons. The vast amount of bottom quarks, charm quarks and tau-leptons produced in the decays of the Z bosons also makes the CEPC an effective B-factory and tau-charm factory. The CEPC will have two interaction points where two large detectors will be located. This document is the second volume of the CEPC Conceptual Design Report (CDR). It presents the physics case for the CEPC, describes conceptual designs of possible detectors and their technological options, highlights the expected detector and physics performance, and discusses future plans for detector R&D and physics investigations. The final CEPC detectors will be proposed and built by international collaborations but they are likely to be composed of the detector technologies included in the conceptual designs described in this document. A separate volume, Volume I, recently released, describes the design of the CEPC accelerator complex, its associated civil engineering, and strategic alternative scenarios
    corecore