32 research outputs found

    Influence du modÚle de comportement rhéologique sur la prédiction de la formabilité d'un alliage d'aluminium sous sollicitations dynamiques

    No full text
    National audienceL'optimisation des procĂ©dĂ©s de mise en forme des tĂŽles requiĂšre une connaissance prĂ©cise du comportement mĂ©canique des matĂ©riaux aux conditions (tempĂ©rature, vitesse de dĂ©formation, ...) rĂ©ellement rencontrĂ©es lors de leur mise en oeuvre. L'objectif premier de ce travail est de proposer un modĂšle prĂ©dictif fiable capable de tracer des courbes limites de formage (CLF) quelles que soient les conditions opĂ©ratoires rencontrĂ©es dans le procĂ©dĂ©. Le modĂšle utilisĂ© est basĂ© sur le modĂšle analytique de Marciniak-Kuczynski, associĂ© Ă  une formulation par Ă©lĂ©ments finis. Ce modĂšle est calibrĂ© Ă  partir d'un seul essai de traction rĂ©alisĂ© suivant les mĂȘmes conditions de vitesse et de tempĂ©rature. Il est montrĂ© que la phase d'identification et de choix du comportement du matĂ©riau (loi d'Ă©crouissage, critĂšre de plasticitĂ©) s'avĂšre primordiale pour un tracĂ© prĂ©cis de la CLF. La procĂ©dure est appliquĂ©e sur un alliage d'aluminium 5086 pour deux conditions diffĂ©rentes de tempĂ©rature et de vitesse de dĂ©formation

    Comparison of constitutive laws on the modeling of thermo-viscoplastic behaviour of an aluminum alloy

    No full text
    International audienceThe accuracy of simulation result depends greatly on the implemented hardening law. An appropriate hardening model should be able to describe the coupling effects of the strain, strain rate and temperature on the material flow stress. Based on the stress-strain curves obtained from uniaxial tensile tests, two different hardening models (power law and saturation) are proposed to describe AA5086 flow stresses under different temperatures (20, 150 and 200°C) and tensile speeds (1, 10 and 100 mm*s-1). The correlation results are compared to experimental data and the roles of the hardening models in predicting the material flow stress are compared and discussed

    Temperature and strain rate influence on AA5086 Forming Limit Curves: experimental results and discussion on the validity of the M-K model

    No full text
    International audienceDue to the high-strength to weigh ratio, corrosion resistance, good workability and weldability characteristics, aluminium alloys are increasingly used in many sectors. Researches on formability of aluminium alloy sheets have always been a hot topic these last years while very few works taking into both temperature and strain rate effects on formability limits can be found in the literature. In this study, the formability of sheet metal AA5086 is investigated at different temperatures (20, 150 and 200°C) and strain rates (0.02, 0.2 and 2 s-1) through a Marciniak test setup. Experimental results show that the formability of AA5086 increases with temperature and decreases with forming speed. Based on the analytical M-K theory, a Finite Element (FE) M-K model is proposed to predict the Forming Limit Curves (FLCs). A modified Ludwick hardening law with temperature and strain rate functions is proposed to describe the thermo-elasto-viscoplastic behavior of the material. The influence of the initial imperfection (f0) sensitivity in the FE M-K model is discussed and a strategy to calibrate f0 is proposed. The agreement between experimental and numerical FLCs indicates that the FE M-K model can be an effective model for predicting sheet metal formability under different operating conditions if the initial imperfection value is calibrated for each forming condition

    Influence of temperature and strain rate on the formability of aluminium alloys: Comparison between experimental and predictive results

    No full text
    International audienceThe use of sheet metal forming processes can be limited by the formability of materials, especially in the case of aluminium alloys. To improve the formability, warm forming processes can be considered. In this work, the effects of temperature and strain rate on the formability of a given aluminium alloy (AA5086) have been studied by means of both experimental and predictive approaches. Experimental tests have been carried out with a Marciniak stamping experimental device. Forming limit curves (FLCs) have been established on a temperature range going from ambient temperature to 200°C and on a strain rate range going from quasi-static up to 2s-1. In order to predict the experimental temperature and strain rate sensitivities, a predictive model based on the finite element simulation of the classical Marciniak and Kuczynski (M-K) geometrical model is proposed. The limit strains obtained with this model are very sensitive to the thermo-viscoplastic behaviour modeling and to the calibration of the initial geometrical imperfection controlling the onset of necking

    Effect of material thermo-viscoplastic modeling on the prediction of forming limit curves of aluminium alloy 5086

    No full text
    International audienceA solution to improve the formability of aluminium alloy sheets can consist in investigating warm forming processes. The optimization of forming process parameters needs a precise evaluation of material properties and sheet metal formability for actual operating environment. Based on the analytical M-K theory, a Finite Element (FE) M-K model was proposed to predict Forming Limit Curves (FLCs) at different temperatures and strain rates. The influences of initial imperfection value (f 0) and material thermos-viscoplastic model on the FLCs are discussed in this work. The flow stresses of AA5086 were characterized by uniaxial tensile tests at different temperatures (20, 150 and 200°C) and equivalent strain rates (0.0125, 0.125 and 1.25 s −1). Three types of hardening models (power law model, saturation model and mixed model) were proposed and adapted to correlate the experimental flow stresses. The three hardening models were implemented into the FE M-K model in order to predict FLCs for different forming conditions. The predicted limit strains are very sensitive to the thermo-viscoplastic modeling of AA5086 and to the calibration of the initial geometrical imperfection which controls the onset of necking

    Caractérisation expérimentale et prédiction de la formabilité d'un alliage d'aluminium en fonction de la température et de la vitesse de déformation

    No full text
    Sheet metal forming processes are widely used in industry. Nevertheless, the use of these processes is limited by the formability of the considered material, in particular in the case of the aluminium alloys. To improve the formability, warm forming processes can be considered. The objective of this work is to study by means of both experimental and numerical approaches, the effects of temperature and strain rate on the formability of AA5086 aluminium alloy sheets and to propose a modeling suitable to predict these effects. Experimental tests have been carried out on this material by means of the Marciniak stamping experimental device. Forming limit curves (FLCs) have been established on a temperature range going from ambient temperature to 200°C and on a strain rate range going from quasi-static up to 2s-1. A positive effect of the temperature and a negative effect of the strain rate on the formability limits were highlighted. To date, very few predictive models of the FLCs taking into account temperature and strain rate effects are proposed in the literature. In this work, in order to predict the experimental temperature and strain rate sensitivities, a predictive model based on the finite element simulation of the Marciniak and Kuczynski (M-K) geometrical model is proposed. The limit strains obtained with this model are very sensitive to the description of the thermo-viscoplastic behaviour modeling and to the calibration of the initial geometrical imperfection controlling the onset of the necking. Thanks to tensile tests carried out for the same operating conditions that those of Marciniak forming tests, several types (power law, saturation and mixed) of hardening laws have been identified. These hardening laws have been implemented in theFE M-K model to obtain numerical limit strains. Very different formability limits have been observed for a given value of the geometrical defect. Several strategies for the calibration of this initial imperfection size have been tested. The use of the experimental point of the FLC0 corresponding to plane strain condition allows a good calibration of the initial imperfection value. This calibration procedure was carried out for all hardening laws. It is shown that the power law type models such as Ludwick law are more efficient while saturation laws such as Voce law are unable to predict the material formability for some conditions. Finally, it is shown that a constant value of the geometrical defect cannot be used to the whole operating conditions studied even if FE M-K model is shown to be efficient to represent the temperature effect rather than strain rate one.Les procĂ©dĂ©s de mise en forme de tĂŽles minces sont trĂšs largement rĂ©pandus dans l’industrie. NĂ©anmoins, l’utilisation de ces procĂ©dĂ©s est limitĂ©e par le niveau de formabilitĂ© du matĂ©riau formĂ©, notamment dans le cas des alliages d’aluminium. Afin d’amĂ©liorer ces limites de formabilitĂ©, des procĂ©dĂ©s de mise en forme Ă  chaud peuvent ĂȘtre envisagĂ©s. L’objectif de cette thĂšse est d’étudier Ă  l’aide d’approches expĂ©rimentale et numĂ©rique l’effet de la tempĂ©rature et de la vitesse de dĂ©formation sur la formabilitĂ© des tĂŽles en alliage d’aluminium AA5086 et de proposer une modĂ©lisation capable de prĂ©dire ces effets. Une campagne d’essais a Ă©tĂ© rĂ©alisĂ©e sur ce matĂ©riau Ă  partir d’un essai d’emboutissage de type Marciniak. Des courbes limites de formage (CLF) ont Ă©tĂ© Ă©tablies sur une plage de tempĂ©rature allant de l’ambiant jusqu’à 200°C et pour des vitesses de dĂ©formation allant du quasi-statique Ă  2s-1. Des effets, positif de la tempĂ©rature et nĂ©gatif de la vitesse de dĂ©formation sur la formabilitĂ© ont Ă©tĂ© mis en Ă©vidence. La prise en compte des effets de la tempĂ©rature et de la vitesse de dĂ©formation dans les modĂšles prĂ©dictifs des CLF, qu’ils soient analytiques ou numĂ©riques, est Ă  ce jour trĂšs limitĂ©e. Dans ce travail, un modĂšle numĂ©rique prĂ©dictif basĂ© sur la simulation par Ă©lĂ©ments finis du modĂšle gĂ©omĂ©trique de Marciniak et Kuczynski (M-K) est proposĂ©. Les dĂ©formations limites obtenues avec de ce modĂšle sont trĂšs sensibles Ă  la description du comportement thermo-viscoplastique du matĂ©riau et Ă  la calibration du dĂ©faut gĂ©omĂ©trique pilotant l’apparition de la striction dans le modĂšle M-K. Des essais de traction uniaxiale rĂ©alisĂ©s dans les mĂȘmes conditions opĂ©ratoires que les essais de mise en forme de Marciniak ont permis d’identifier des lois d’écrouissage de nature trĂšs diffĂ©rentes (rigidifiante, saturante ou mixte). Ces lois conduisent Ă  des prĂ©dictions trĂšs diffĂ©rentes de la formabilitĂ© du matĂ©riau pour une valeur donnĂ©e du dĂ©faut gĂ©omĂ©trique du modĂšle EF M-K. DiffĂ©rentes stratĂ©gies de calibration de la taille de ce dĂ©faut initial ont Ă©tĂ© envisagĂ©es. L’utilisation du point expĂ©rimental de la CLF correspondant Ă  des conditions de dĂ©formation plane permet de calibrer de maniĂšre satisfaisante la valeur de ce dĂ©faut. Cette procĂ©dure de calibration a Ă©tĂ© appliquĂ©e pour l’ensemble des lois identifiĂ©es. Les lois de nature rigidifiante de type Ludwick se sont montrĂ©es les plus effficaces alors que les lois saturante de type Voce se sont avĂ©rĂ©es incapables de prĂ©dire la formabilitĂ© du matĂ©riau pour certaines conditions opĂ©ratoires. Finalement, il est dĂ©montrĂ© qu’une valeur constante du dĂ©faut gĂ©omĂ©trique ne peut ĂȘtre retenue pour l’ensemble des conditions opĂ©ratoires Ă©tudiĂ©es mĂȘme si le modĂšle M-K s’est avĂ©rĂ© assez efficace pour reprĂ©senter l’effet de la tempĂ©rature plutĂŽt que celui de la vitesse de dĂ©formation

    Experimental characterization and prediction of the formability of an aluminium alloy considering temperature and strain rate effects

    No full text
    Les procĂ©dĂ©s de mise en forme de tĂŽles minces sont trĂšs largement rĂ©pandus dans l’industrie. NĂ©anmoins, l’utilisation de ces procĂ©dĂ©s est limitĂ©e par le niveau de formabilitĂ© du matĂ©riau formĂ©, notamment dans le cas des alliages d’aluminium. Afin d’amĂ©liorer ces limites de formabilitĂ©, des procĂ©dĂ©s de mise en forme Ă  chaud peuvent ĂȘtre envisagĂ©s. L’objectif de cette thĂšse est d’étudier Ă  l’aide d’approches expĂ©rimentale et numĂ©rique l’effet de la tempĂ©rature et de la vitesse de dĂ©formation sur la formabilitĂ© des tĂŽles en alliage d’aluminium AA5086 et de proposer une modĂ©lisation capable de prĂ©dire ces effets. Une campagne d’essais a Ă©tĂ© rĂ©alisĂ©e sur ce matĂ©riau Ă  partir d’un essai d’emboutissage de type Marciniak. Des courbes limites de formage (CLF) ont Ă©tĂ© Ă©tablies sur une plage de tempĂ©rature allant de l’ambiant jusqu’à 200°C et pour des vitesses de dĂ©formation allant du quasi-statique Ă  2s-1. Des effets, positif de la tempĂ©rature et nĂ©gatif de la vitesse de dĂ©formation sur la formabilitĂ© ont Ă©tĂ© mis en Ă©vidence. La prise en compte des effets de la tempĂ©rature et de la vitesse de dĂ©formation dans les modĂšles prĂ©dictifs des CLF, qu’ils soient analytiques ou numĂ©riques, est Ă  ce jour trĂšs limitĂ©e. Dans ce travail, un modĂšle numĂ©rique prĂ©dictif basĂ© sur la simulation par Ă©lĂ©ments finis du modĂšle gĂ©omĂ©trique de Marciniak et Kuczynski (M-K) est proposĂ©. Les dĂ©formations limites obtenues avec de ce modĂšle sont trĂšs sensibles Ă  la description du comportement thermo-viscoplastique du matĂ©riau et Ă  la calibration du dĂ©faut gĂ©omĂ©trique pilotant l’apparition de la striction dans le modĂšle M-K. Des essais de traction uniaxiale rĂ©alisĂ©s dans les mĂȘmes conditions opĂ©ratoires que les essais de mise en forme de Marciniak ont permis d’identifier des lois d’écrouissage de nature trĂšs diffĂ©rentes (rigidifiante, saturante ou mixte). Ces lois conduisent Ă  des prĂ©dictions trĂšs diffĂ©rentes de la formabilitĂ© du matĂ©riau pour une valeur donnĂ©e du dĂ©faut gĂ©omĂ©trique du modĂšle EF M-K. DiffĂ©rentes stratĂ©gies de calibration de la taille de ce dĂ©faut initial ont Ă©tĂ© envisagĂ©es. L’utilisation du point expĂ©rimental de la CLF correspondant Ă  des conditions de dĂ©formation plane permet de calibrer de maniĂšre satisfaisante la valeur de ce dĂ©faut. Cette procĂ©dure de calibration a Ă©tĂ© appliquĂ©e pour l’ensemble des lois identifiĂ©es. Les lois de nature rigidifiante de type Ludwick se sont montrĂ©es les plus effficaces alors que les lois saturante de type Voce se sont avĂ©rĂ©es incapables de prĂ©dire la formabilitĂ© du matĂ©riau pour certaines conditions opĂ©ratoires. Finalement, il est dĂ©montrĂ© qu’une valeur constante du dĂ©faut gĂ©omĂ©trique ne peut ĂȘtre retenue pour l’ensemble des conditions opĂ©ratoires Ă©tudiĂ©es mĂȘme si le modĂšle M-K s’est avĂ©rĂ© assez efficace pour reprĂ©senter l’effet de la tempĂ©rature plutĂŽt que celui de la vitesse de dĂ©formation.Sheet metal forming processes are widely used in industry. Nevertheless, the use of these processes is limited by the formability of the considered material, in particular in the case of the aluminium alloys. To improve the formability, warm forming processes can be considered. The objective of this work is to study by means of both experimental and numerical approaches, the effects of temperature and strain rate on the formability of AA5086 aluminium alloy sheets and to propose a modeling suitable to predict these effects. Experimental tests have been carried out on this material by means of the Marciniak stamping experimental device. Forming limit curves (FLCs) have been established on a temperature range going from ambient temperature to 200°C and on a strain rate range going from quasi-static up to 2s-1. A positive effect of the temperature and a negative effect of the strain rate on the formability limits were highlighted. To date, very few predictive models of the FLCs taking into account temperature and strain rate effects are proposed in the literature. In this work, in order to predict the experimental temperature and strain rate sensitivities, a predictive model based on the finite element simulation of the Marciniak and Kuczynski (M-K) geometrical model is proposed. The limit strains obtained with this model are very sensitive to the description of the thermo-viscoplastic behaviour modeling and to the calibration of the initial geometrical imperfection controlling the onset of the necking. Thanks to tensile tests carried out for the same operating conditions that those of Marciniak forming tests, several types (power law, saturation and mixed) of hardening laws have been identified. These hardening laws have been implemented in theFE M-K model to obtain numerical limit strains. Very different formability limits have been observed for a given value of the geometrical defect. Several strategies for the calibration of this initial imperfection size have been tested. The use of the experimental point of the FLC0 corresponding to plane strain condition allows a good calibration of the initial imperfection value. This calibration procedure was carried out for all hardening laws. It is shown that the power law type models such as Ludwick law are more efficient while saturation laws such as Voce law are unable to predict the material formability for some conditions. Finally, it is shown that a constant value of the geometrical defect cannot be used to the whole operating conditions studied even if FE M-K model is shown to be efficient to represent the temperature effect rather than strain rate one

    Détermination numérique de courbes limites de formage en fonction de la température pour un alliage d'aluminium 5086

    No full text
    L'évaluation de la formabilité des tÎles pour les conditions opératoires (température et vitesse de déformation) rencontrées au cours d'un procédé de mise en forme permet de fiabiliser la simulation numérique de ce procédé. La mise en forme de tÎles à chaud peut conduire à un gain de formabilité qu'il est indispensable de prendre en compte lors du développement d'outils prédictifs des CLF. La mise en place d'un modÚle simple de type M-K, basé sur une formulation EF, a permis de mettre en évidence l'influence du type de loi identifiée pour un alliage d'aluminium 5086 sur le tracé des CLF

    Corrosion Behavior and Microstructure of Cu-Based Composite Coatings Deposited by Cold Spraying

    No full text
    This study aimed to prepare Cu-based coatings with excellent corrosion resistance by cold spraying. Cu, Zn, and Al particles with different mass ratios were mechanically blended as the feedstock materials. The microstructure, element content, mechanical properties, and corrosion resistance of the coatings were investigated. Results showed that all the prepared coatings presented a dense microstructure. In addition, the thickness of the coatings exceeded 290 ÎŒm, and the existence of the “hammer effect” made the thickness and hardness of the coatings present an obvious negative correlation. Electrochemical test results indicated that changes in the element content could significantly affect the corrosion behavior of coatings. During the immersion period, the coatings containing Al exhibited better corrosion resistance

    Identification of 7B04 aluminum alloy anisotropy yield criteria with conventional test and Pottier test at elevated temperature

    Full text link
    International audience7B04 aluminum alloy is widely used for strength critical aerospace structural applications. In this paper, the plastic anisotropy of this alloy at 200 °C was investigated based on Hill'48 and Yld2000-2D yield criteria. Thermal tensile test at setting temperature was carried out by a designed electrical heating system and the strain field was measured by the digital image correlation system simultaneously. Parameters of Hill'48 yield criterion with Voce hardening were determined directly based on the thermal tensile test. The parameters of Yld2000-2D criterion were obtained by the inverse identification method with Pottier test at elevated temperature which can generate heterogeneous strain fields. Deep drawing test was carried out at 200 °C and the earing heights were measured. The accuracy of the determined yield criteria parameters was validated by numerical and experimental deep drawing test results. © 2019 The Author
    corecore