1,593 research outputs found

    Recent developments on catalytic membrane for gas cleaning

    Get PDF
    © 2019 Elsevier B.V. Catalytic membrane, a novel membrane separation technology that combines catalysis and separation, exhibits significant potential in gas purification such as formaldehyde, toluene and nitrogen oxides (NOx). The catalytic membrane can remove solid particles through membrane separation and degrade gaseous pollutants to clean gas via a catalytic reaction to achieve green emissions. In this review, we discussed the recent developments of catalytic membranes from two aspects: preparation of catalytic membrane and its application in gas cleaning. Catalytic membranes are divided into organic catalytic membranes and inorganic catalytic membranes depending on the substrate materials. The organic catalytic membranes which are used for low temperature operation (less than 300 °C) are prepared by modifying the polymers or doping catalytic components into the polymers through coating, grafting, or in situ growth of catalysts on polymeric membrane. Inorganic catalytic membranes are used at higher temperature (higher than 500 °C). The catalyst and inorganic membrane can be integrated through conventional deposition methods, such as chemical (physical) vapor deposition and wet chemical deposition. The application progress of catalytic membrane is focused on purifying indoor air and industrial exhaust to remove formaldehyde, toluene, NOx and PM2.5, which are also summarized. Perspectives on the future developments of the catalytic membranes are provided in terms of material manufacturing and process optimization

    A Novel Image Segmentation Algorithm Based on Graph Cut Optimization Problem

    Get PDF
    Image segmentation, a fundamental task in computer vision, has been widely used in recent years in many fields. Dealing with the graph cut optimization problem obtains the image segmentation results. In this study, a novel algorithm with weighted graphs was constructed to solve the image segmentation problem through minimization of an energy function. A binary vector of the segmentation label was defined to describe both the foreground and the background of an image. To demonstrate the effectiveness of our proposed method, four various types of images were used to construct a series of experiments. Experimental results indicate that compared with other methods, the proposed algorithm can effectively promote the quality of image segmentation under three performance evaluation metrics, namely, misclassification error rate, rate of the number of background pixels, and the ratio of the number of wrongly classified foreground pixels

    2-(2-{2-[2-(Dibromo­meth­yl)phen­oxy]eth­oxy}benz­yloxy)benzaldehyde

    Get PDF
    The mol­ecule of the title compound, C23H20Br2O4, adopts a Z conformation as a result of inter­molecular C—H⋯Br bonding. One benzene ring, with the structure R-CHBr2, makes a dihedral angle of 63.0 (2)° with the other benzene ring attached to the aldehyde group. Inter­molecular π–π stacking inter­actions [centroid–centroid distance = 3.698 (4) Å] and a weak C—H⋯Br contact is present in the crystal structure

    The bladder microbiome of NMIBC and MIBC patients revealed by 2bRAD-M

    Get PDF
    BackgroundBladder cancer (BCa) is the most common malignancy of the urinary tract which can be divided into non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC), and their microbial differences are not fully understood. This study was conducted by performing 2bRAD sequencing for Microbiome (2bRAD-M) on NMIBC and MIBC tissue samples to investigate the microbiota differences between NMIBC and MIBC individuals.MethodsA total of 22 patients with BCa, including 7 NMIBC and 15 MIBC, were recruited. Tumor tissues were surgically removed as samples and DNA was extracted. Type IIB restriction endonucleases were used to enzymatically cleave the microbial genome for each microbe’s tag and map it to species-specific 2bRAD markers to enable qualitative and quantitative studies of microbes between MIBC and NMIBC tissues.ResultsA total of 527 species were detected. The microbial diversity of NMIBC tissues was significantly higher than that of MIBC tissues. Microbial composition of the two tumor tissues was similar, where Ralstonia_sp000620465 was the most dominant species. 4 species (Acinetobacter_guillouiae, Anoxybacillus_A_rupiensis, Brevibacillus_agri and Staphylococcus_lugdunensis) were enriched in NMIBC, while Ralstonia_mannitolilytica, Ralstonia_pickettii, and Ralstonia_sp000620465 were overrepresented in MIBC. 252 discriminatory character taxa were also revealed by linear discriminant analysis effect sizea (LEfSe). Species importance point plots identified Ralstonia_sp000620465, Cutibacterium_acnes and Ralstonia_pickettii as the three most important species between the two groups. Meanwhile, functional annotation analysis showed 3011 different COGs and 344 related signaling pathways between MIBC and NMIBC microbiome.ConclusionThis first 2bRAD-M microbiome study on MIBC and NMIBC tissues revealed significant differences in the microbial environment between the two groups, which implies a potential association between tumor microbial dysbiosis and BCa, and provides a possible target and basis for subsequent studies on the mechanisms of BCa development and progression

    Sketch-Based Annotation and Visualization in Video Authoring

    Full text link

    The Diagnostic and Prognostic Potential of MicroRNAs for Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (also termed hepatocarcinoma) is the third cancer-related cause of death worldwide. To our knowledge, markers such as α-fetoprotein display poor performance in the early diagnosis and prognosis prediction of hepatocarcinoma. MicroRNAs are an evolutionarily conserved class of small noncoding single-stranded RNA typically consisting of 18–24 nucleotides. They have been reported to act as tumor suppressors or oncogenes via reversely regulating gene expression. Recent evidence has revealed that microRNAs, especially in body fluids such as the blood and urine, display important diagnostic and prognostic potential for hepatocarcinoma. Here, we reviewed currently available data on microRNAs and hepatocarcinoma, with emphasis on the biogenesis and function of microRNAs and their potential diagnostic and prognostic value for hepatocarcinoma. We also discussed the clinical utility perspectives of microRNAs in hepatocarcinoma and possible challenges

    The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although an abundance of evidence has indicated that tumor-associated macrophages (TAMs) are associated with a favorable prognosis in patients with colon cancer, it is still unknown how TAMs exert a protective effect. This study examined whether TAMs are involved in hepatic metastasis of colon cancer.</p> <p>Materials and methods</p> <p>One hundred and sixty cases of pathologically-confirmed specimens were obtained from colon carcinoma patients with TNM stage IIIB and IV between January 1997 and July 2004 at the Cancer Center of Sun Yat-Sen University. The density of macrophages in the invasive front (CD68TF<sub>Hotspot</sub>) was scored with an immunohistochemical assay. The relationship between the CD68TF<sub>Hotspot </sub>and the clinicopathologic parameters, the potential of hepatic metastasis, and the 5-year survival rate were analyzed.</p> <p>Results</p> <p>TAMs were associated with the incidence of hepatic metastasis and the 5-year survival rate in patients with colon cancers. Both univariate and multivariate analyses revealed that the CD68TF<sub>Hotspot </sub>was independently prognostic of survival. A higher 5-year survival rate among patients with stage IIIB after radical resection occurred in patients with a higher macrophage infiltration in the invasive front (81.0%) than in those with a lower macrophage infiltration (48.6%). Most importantly, the CD68TF<sub>Hotspot </sub>was associated with both the potential of hepatic metastasis and the interval between colon resection and the occurrence of hepatic metastasis.</p> <p>Conclusion</p> <p>This study showed evidence that TAMs infiltrated in the invasive front are associated with improvement in both hepatic metastasis and overall survival in colon cancer, implying that TAMs have protective potential in colon cancers and might serve as a novel therapeutic target.</p

    Molecular Cloning and Characterization of Full-Length cDNA of Calmodulin Gene from Pacific Oyster Crassostrea gigas

    Get PDF
    The shell of the pearl oyster (Pinctada fucata) mainly comprises aragonite whereas that of the Pacific oyster (Crassostrea gigas) is mainly calcite, thereby suggesting the different mechanisms of shell formation between above two mollusks. Calmodulin (CaM) is an important gene for regulating the uptake, transport, and secretion of calcium during the process of shell formation in pearl oyster. It is interesting to characterize the CaM in oysters, which could facilitate the understanding of the different shell formation mechanisms among mollusks. We cloned the full-length cDNA of Pacific oyster CaM (cgCaM) and found that the cgCaM ORF encoded a peptide of 113 amino acids containing three EF-hand calcium-binding domains, its expression level was highest in the mantle, hinting that the cgCaM gene is probably involved in shell formation of Pacific oyster, and the common ancestor of Gastropoda and Bivalvia may possess at least three CaM genes. We also found that the numbers of some EF hand family members in highly calcified species were higher than those in lowly calcified species and the numbers of these motifs in oyster genome were the highest among the mollusk species with whole genome sequence, further hinting the correlation between CaM and biomineralization
    corecore