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Abstract: In the past decades, renewable biomass has attracted attention as an alternative 

energy source for limited fossil fuels. As a huge amount of non-food biomass renewable energy 

source, the hydrolysis of cellulose to glucose by heterogeneous solid acids catalysts has caused 

increasing research interest. Herein we synthesized the zeolite HY nanocrystals grafted titania 

nanofibres (HY-TiO2) with controlled crystal sizes, which could catalyze the hydrolysis of 

cellulose to glucose in aqueous solutions at relatively low temperatures (100-130oC). 

Characterization results XRD, TEM and FT-IR demonstrated that fine the zeolite HY 

nanocrystals and stable and well-distributed crystals (40-60 nm) on the surface of titania 

nanofibres. The HY-TiO2 as a catalyst had better hydrolyze cellulose to glucose than the 

HYnano did under identical conditions. The results of characterized determined that the better 

hydrolysis performance of cellulose may due to the HY-TiO2 catalyst does not aggregate and 

is more likely to dissolve and diffuse, thus enhancing the accessibility of the active site of the 

catalyst and the reactants.  
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Essentials: Low-temperature cellulose hydrolysis to glucose in aqueous solutions 

over HY zeolite nanocrystals grafted on anatase nanofibres 

  



 

 

 

1 Introduction 

Today the world is short of energy, more and more people are paying attention to new 

energy resources. Everybody likes to pursue the goal that we can use clean fuels. Biomass is 

the fourth largest energy source after coal, oil and natural gas, and plays an important role in 

the entire energy system. Among various biomass resources, cellulose and hemicellulose 

account for about 60−80% of the total weight, which makes the development of its high-

efficiency value-added catalytic process more and more important.1-3 Cellulose is a huge 

amount of non-food biomass resources. And as a renewable energy source, the conversion of 

cellulose to fuels and chemicals has caused increasing research interest worldwide.4,5 The direct 

and efficient hydrolysis of cellulose to glucose as the first step in cellulose conversion has 

received extensive attention using homogeneous catalysts or heterogeneous catalysts.6,7 The 

catalytic hydrolysis of cellulose by homogeneous catalysts has been extensively studied, but 

its use has disadvantages, such as corrosion, environmental pollution, and difficulty in catalyst 

recovery.  

In recent years, the homogeneous catalysts are replaced advantageously by heterogeneous 

solid acids catalysts, such as zeolites,8,9 metal oxides,10,11 polymeric catalysts,12,13 magnetic 

catalysts,14-16 and carbonaceous solid acids,17,18 because heterogeneous catalysts are safe, easy 

separation, economic efficiency and environmental friendliness. In addition, heterogeneous 

catalysts often use ionic liquids as solvents for the hydrolysis reaction during the hydrolysis of 

cellulose to produce glucose. Due to the high viscosity of the ionic liquid, it is expensive and 



 

 

 

inconvenient to handle.15,17,19,20 Due to the low solubility of cellulose in water and the large 

mass transfer resistance between cellulose and solid catalysts, the high yield of glucose from 

cellulose using heterogeneous catalysts remains a significant challenge. Whether it is a 

homogeneous catalyst or a heterogeneous catalyst, the cellulose hydrolysis reaction 

temperature generally exceeds 180 °C due to the strong cellulose structure. Therefore, under 

mild reaction conditions, efficient hydrolysis of cellulose without any additives has become an 

urgent challenge. 

In the field of zeolite porous materials, many efforts have been made to modify zeolites 

because small pores and agglomerated large particles of zeolite strongly hinder the diffusion of 

reactants, intermediates or products. For instance, introducing mesopores/macropores into 

zeolite framework through templating strategies has been demonstrated to make sense in many 

studies. Liu and coworkers’ recent investigation on zeolite ZSM-5 single crystals with b-axis-

aligned mesopores suggests that such oriented mesoporous materials exhibits an excellent 

hydrothermal stability and much higher catalytic activities in converting bulky substrates 

compared with conventional zeolite ZSM-5 with randomly oriented mesopores.21,22 Inspired 

by these work, we design a new structure zeolite catalyst — zeolite nanocrystals supported on 

nanofibres substrates, hereby offer new opportunities. Since the high surface area and 

nanocrystals of zeolites can be exposed so as to alleviate the drawbacks of zeolite porous 

materials catalyst, the difficulty in separating and recycling catalyst solids, and more 

importantly the difficulty in synthesizing zeolite nanocrystals, because the zeolite nanocrystals 

are unable to move once grafted on the surface of the nanofibres substrate and thus coagulation 



 

 

 

during crystallization and calcination is prevented. And this new structure zeolite catalyst is 

active in hydrolysis of cellulose in the aqueous solutions at lower temperature. 

2 Experimental Section 

2.1 Materials 

α-Cellulose (≤25μm), Anatase (99%, 325 mesh), Tetramethylammonium hydroxide 

solution (TMAOH, 10wt.% in H2O), aluminium isopropoxide (≥98%), and Poly 

(diallyldimethylammonium chloride) solution (PDDA, 20wt. % in water) were purchased from 

Aladdin Industrial Inc. (Shanghai, China). Colloidal silica(30wt. %) was purchased from 

Merck(Shanghai, China). Aqueous ammonia solution was purchased from Sinopharm 

Chemical Reagent Company. And NaY were purchased from the Catalyst Plant of Nankai 

University. 

2.2 Catalyst Preparation 

Synthesis of TiO2 nanofibres. According to methods reported in the literature.23 3 g of anatase 

particles (~ 325 mesh from Aldrich) was mixed with 40 mL of 10 M NaOH. The suspension 

was sonicated for 0.5 h or stirred for 1.5 h until the solution become homogeneous. Transferred 

the solution into a 100mL autoclave with a PTFE container inside (around 2 /3 was filled). The 

autoclave was maintained at temperature of 180 ℃ for 48 h under static conditions. The 

precipitate (sodium-form anatase) was recovered, washed with distilled water to remove 



 

 

 

excessive NaOH, until the pH=7-9. It was ion-exchanged with H+ (using 2000 mL of 0.1M 

HCl solution 3 times with stirring for 1h) to produce H2Ti3O7; and washed again with distilled 

water until pH~7 was reached. It was washed with ethanol and then the H2Ti3O7 nanofibers 

product was dried at 80℃ for 12 h. Finally, it was calcined at 700℃ for 5 h in a muffle furnace 

at a heating rate of 5℃/min. 

Synthesis nanozeolite NaY colloidal solution. According to methods reported in the literature. 

24Clear zeolite Y precursor is prepared with molar composition of:1 Al2O3:4.35 SiO2: 2.4 

TMAOH: 0.048 Na2O: 249 H2O. Briefly, 25.5 g of H2O, 17.4 g of TMAOH, 4.2 g of aluminium 

isopropoxide, and 8.7g of Colloidal silica (Ludox HS-30) were mixed with stirring for 2 days 

under room temperature. Then, the products are obtained by crystallization at 80, 100, 120, 

140oC for 3 days in the autoclaves. Finally, nanozeolite NaY seeds were obtained, (they were 

at the bottom of autoclaves) and stir the gel with a glass rod to make the seeds disperse mainly 

in the mixture (No addition of anything). 

Zeolite NaY grafted on H2Ti3O7 nanofibres. According to methods reported in the literature.25,26 

Support treatment: H2Ti3O7 nanofibres were immersed with aqueous ammonia solution with 

stirring for 1 h, and then separated by centrifugation/filtration, removed water. (Note: 28% 

NH3-H2O one drops, 60 mL water, diluted to pH=9.5-10.5; 1.0 g nanofibres and 60 ml diluted 

aqueous ammonium solution.) The NH3-H2O modified 1.0 g of H2Ti3O7 nanofibres were 

modified with 1 M NaCl solution (60 mL, including 0.5wt% of PDDA together) for about 0.5 

h with stirring, then centrifugation/filtration, removed the liquid solution. The residual PDDA 

was removed by redispersing the 1.0 g of H2Ti3O7 nanofibres in aqueous ammonia solution 3 



 

 

 

times (250ml = (200ml H2O + 50ml 28% aqueous ammonium solution, 60 ml each) to 

centrifuge.  

Graft zeolite seeds onto nanofibres: 1.0 g of nanofibres was added into the dilute synthesis 

solution (10 ml NaY seeds solution, 50 mL water). Stir the mixtures for 4 h continuously and 

then transfer the solutions into the autoclave reactor (100-ml autoclaves two for each sample). 

Crystallization was performed at 80, 100, 120, 140 oC for 3 days. Thus obtained solid products 

were collected by centrifugation/filtration, final products were washed by water until the pH 

value reached 7-9, and dried at 80 oC for 12 h. Then it was calcined at 550 ℃for 5 h in a muffle 

furnace at a heating rate of 5℃/min. The obtained catalysts (included pure nanozeolite NaY) 

were treated by typical ion-exchange of Na+ with H+ to form Brønsted acids according to 

methods reported in the literature,27 and these catalysts were named as HYnano, HY-TiO2-80, 

HY-TiO2-100, HY-TiO2-120, HY-TiO2-140, respectively.  

2.3 Characterization 

The crystallinity of the catalysts were characterized by X-ray diffraction (XRD), using a 

Rigaku Smartlab with Cu Kα radiation (λ = 0.1542 nm) at a scan rate of 5°/min from 5 to 80 

(2θ) at a voltage of 40 kV.  

The morphology of the catalysts were examined by Field-emission scanning electron 

microscopy (FESEM) utilizing a JSM-7600F (JEOL Ltd., Japan) with an operating voltage of 

30 kV. Transmission electron microscopy (TEM) images were obtained by a JEOL JEM-2100 

instrument at the accelerating voltage of 200 kV. 



 

 

 

The amount of acid sites was determined by Temperature-programmed desorption of 

ammonia (NH3-TPD), using a AutoChem II 2920 apparatus. The sample (0.1g) was put into a 

U-tube reactor. The tube was initially purged with a He flow and heated to 350 °C for activation 

(30 mL/min, 1h). After the pretreatment, the sample was cooled to 100 °C and saturated with 

in 5% NH3/He (30 mL/min, 1 h). Physically adsorbed ammonia was swept by purging a He 

flow of 40 mL/min for 0.5h. Finally, the packed bed was heated at a rate of 10 °C/min to 600 °C 

under the He flow. 

Fourier transform infrared spectra (FT-IR) was used to detect the surface functional groups 

by a FTIR spectrophotometer (Thermo Electron Nicolet360, USA) using the KBr wafer 

technique 400–4000 cm−1. Brönsted and Lewis acid density were determined by pyridine 

adsorption infrared (Py-FTIR) measurements using a Thermo Electron Nicolet360. Before test, 

the samples were prepared by grinding thoroughly with 0.12g KBr and visible samples to form 

self-supporting wafers. Then, they were placed in a sample cell coupled to a vacuum line and 

evacuated (10-3 Pa) in situ at 400 oC for 2 h to remove adsorbed water and other volatiles. After 

the temperature was cooled down to room temperature, drop 1~2 drops of pyridine to 

completely moisten/wet the sample wafers. After the adsorption was completed, the excessive 

pyridine was desorbed/removed under vacuum at 150 oC for 1h, and then the spectra were 

recorded. 

2.4 Catalytic experiments 

The performance of zeolite HY nanocrystals grafted titania nanofibres at different 



 

 

 

crystallization temperatures were tested in the process of hydrolysis of cellulose. Typically, 0.1 

g catalyst and 0.2 g α-cellulose were placed into a 100 mL Teflon-lined stainless steel autoclave 

with 10 ml deionised water. Subsequently, after being heated to 130 oC, the reaction was started 

with stirring at a rate of 800 rpm for desired reaction times. After the reaction, the autoclave 

was cooled to room temperature. Afterwards, the products were filtered to separate the solid. 

The solid (catalyst and residual cellulose) was dried at 80 oC overnight and weighted to 

determine conversion of cellulose. The liquid phase were analyzed by High Performance 

Liquid Chromatography, the HPLC system (Agilent 1100) equipped with RI detector 

(Shimadzu RID-10A) and a Aminex HPX-87H column (Bio-Rad, 300х7.8 mm), using 5 mM 

H2SO4 as eluent with a flow rate of 0.5 mL min-1 at 50 oC. 

The conversion of cellulose was calculated by weight difference in the solid before and 

after reaction basis on Equation (1). 

Conversion (%) = 
𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐−�𝑚𝑚𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟 𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑟𝑟−𝑚𝑚𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠�

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐
× 100                        (1) 

The yield and selectivity of glucose was calculated basis on Equation (2) and Equation 

(3), respectively. 

Yield (%) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑜𝑜 𝑔𝑔𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑜𝑜 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑙𝑙𝑝𝑝𝑚𝑚𝑝𝑝 𝑖𝑖𝑖𝑖 𝑝𝑝ℎ𝑚𝑚 𝑝𝑝𝑚𝑚𝑙𝑙𝑔𝑔𝑝𝑝𝑖𝑖𝑚𝑚𝑖𝑖 (𝑏𝑏𝑙𝑙𝑚𝑚𝑚𝑚 𝑚𝑚𝑖𝑖 𝑔𝑔𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑖𝑖𝑖𝑖𝑝𝑝) 

× 100                  (2)                                                         

Selectivity（%）= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑜𝑜 𝑔𝑔𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑔𝑔𝑔𝑔𝑝𝑝
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑜𝑜 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑚𝑚𝑖𝑖𝑐𝑐𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝 (𝑏𝑏𝑙𝑙𝑚𝑚𝑚𝑚 𝑚𝑚𝑖𝑖 𝑔𝑔𝑚𝑚𝑔𝑔𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑖𝑖𝑖𝑖𝑝𝑝) 

× 100                     (3)                                                         



 

 

 

3 Results and Discussion 

3.1 Structural features of the catalysts HY 

Figure 1 (left) gave the X-ray powder diffraction patterns (XRD) of HY-TiO2-80, HY-

TiO2-100, HY-TiO2-120 and HY-TiO2-140 to identify the crystallographic phases of Y zeolite, 

as well as two reference samples of titania nanofibres and the bulk zeolite HY nanocrystals 

(HYnano). By comparison, we can find that one new peak (2θ=23o or 2θ=27.3o) are observed 

at HY-TiO2-80, HY-TiO2-100, HY-TiO2-120 and HY-TiO2-140, which is ascribed to the main 

characteristic peak of HY zeolite. But the new peak at HY-TiO2-120 and HY-TiO2-140 were 

weaker than that of at HY-TiO2-80 and HY-TiO2-100, because probably the zeolite HY 

nanocrystals do not crystallize as well on the titania nanofibres at 120oC and 140 oC. We can 

also see that the intensity of the diffraction peaks of HY-TiO2-80, HY-TiO2-100, HY-TiO2-120 

and HY-TiO2-140 were significantly stronger than that of the titania nanofibres, indicating a 

higher crystallinity. Moreover, only one main peak appears indicates that the zeolite HY 

nanocrystals on titania nanofibres arranged in uniform orientation. 28 

In order to further demonstrate that the zeolite HY nanocrystals grafted on titania 

nanofibres, Fourier transform infrared spectra (FT-IR) was determined in Figure 1 (right). We 

can see that the distinct bands at 475 cm-1 and 1092 cm-1, ascribed to the bending modes and 

asymmetric stretching of Si–O–Si respectively,29,30 were detected in the zeolite HY 

nanocrystals, HY-TiO2-80, HY-TiO2-100, HY-TiO2-120 and HY-TiO2-140. This spectrum also 

exhibits a weak band at 786 cm-1 ascribed to the symmetric stretching of Si–O–Si.29,31 However, 



 

 

 

the bands of Si–O–Si of HY-TiO2-120 and HY-TiO2-140 were weaker than that in HY-TiO2-

80, HY-TiO2-100. Typical peak of Ti–O was detected at about 946 cm-1 and 813 cm-1 in titania 

nanofibres, however, this peak was not detected in HY-TiO2-80, HY-TiO2-100, HY-TiO2-120 

and HY-TiO2-140, because it may be overlapped by the strong band of the zeolite HY 

nanocrystals on the titania nanofibres.30,31 Besides, The broad peak at 3450 cm-1 and 1629 cm-

1 were assigned to the stretching vibration and bending vibration of O-H bond in absorbed water 

respectively,32,33 while the weak peak at around 2924 cm-1 is probably assigned to carbonaceous 

contaminants.34 Hence, all these observations are consistent with the XRD results, indicating 

that the zeolite HY nanocrystals are well grafted onto the titania nanofibres. 
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Figure 1. (Left) X-ray powder diffraction patterns (XRD); (Right) FT-IR spectra of the zeolite HY nanocrystals 

grafted on titania nanofibres at different crystallization temperatures, titania nanofibres, and the zeolite HY 

nanocrystals. 

 

Figure 2 gave the images of transmission electron microscope (TEM). From these images 

we can see the morphology of the zeolite HY nanocrystals grafted on the titania nanofibres. 

The zeolite HY nanocrystals were stable and well-distributed (40-60 nm) on the surface of HY-



 

 

 

TiO2-80 and HY-TiO2-100. However, the zeolite HY nanocrystals do not grow well on the 

surface of HY-TiO2-120 and HY-TiO2-140. After grafting the zeolite HY nanocrystals onto 

titania nanofibres, the spherical shape of HY nanocrystals (40-60 nm) was more uniform and 

diffused, as shown in Figure S1. This is consistent with the results of XRD and FT-IR, probably 

because of the crystallization of the zeolite HY nanocrystals seeds was affected as 

crystallization temperature increases. All these results suggest that we can achieve fine zeolite 

HY nanocrystals and stable and well-distributed crystals on the surface of titania nanofibres. 

 
Figure 2. TEM images of zeolite HY nanocrystals grafted on titania nanofibres at different crystallization 

temperatures. (a) HY-TiO2-80, (b) HY-TiO2-100, (c) HY-TiO2-120 and (d) HY-TiO2-140. 

3.2 Acid properties of the catalysts 

Figure 3 (left) gave the NH3-TPD spectra of titania nanofibres, the bulk zeolite HY 

nanocrystals (HYnano) and the zeolite HY nanocrystals grafted on titania nanofibres at 

different crystallization temperatures, and the quantitative results are showed in Table S1. In 



 

 

 

the low temperature range (100 – 250 °C), the peaks observed could be ascribed to the NH3 

desorption on the weak acid sites, whereas the peaks at high temperature range (400 –600 °C) 

could be ascribed to strong acid sites.35  Figure 3 (left) show that the HYnano, HY-TiO2-80, 

HY-TiO2-100, HY-TiO2-120 and HY-TiO2-140 both had two absorption peaks around 200 oC 

and 460 oC, which were attributed to weak acid sites and strong acid sites, respectively. 

However, with an increase of the crystallization temperature, the absorption peak of the strong 

acid site was shifted to the weak acid site. By contrast, the total acid contents of the zeolite HY 

nanocrystals grafted on the titania nanofibres are less than that of the zeolite HY nanocrystals, 

as shown in Table S1. This indicated that acidity of HY-TiO2-80, HY-TiO2-100, HY-TiO2-120 

and HY-TiO2-140 are weaker than that of the zeolite HY nanocrystals. In other words, the bulk 

zeolite HY nanocrystals can provide more acid sites, in general which is beneficial to the 

improvement of catalytic performance.  
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Figure 3. (Left) NH3-TPD spectra and (Right) Py-FTIR spectra of titania nanofibres, the HYnano and the zeolite 

HY nanocrystals grafted on titania nanofibres at different crystallization temperatures. 

 



 

 

 

In order to more insight into the types of acidic sites, the acidity of titania nanofibres, the 

bulk zeolite HY nanocrystals and zeolite HY nanocrystals grafted on titania nanofibres at 

different crystallization temperatures were identified by pyridine adsorption infrared (Py-FTIR) 

as show in Figure 3 (right). According to reports that the band around at 1545 cm-1and 1640 

cm-1 correspond to pyridine adsorbed on the Brönsted acid sites, whereas the band around 1450 

cm-1and 1611 cm-1 are ascribed to pyridine adsorbed on Lewis acid sites.36,37 We can see that 

only few irregular peaks were observed in titania nanofibres, indicating that there were hardly 

any acid sites. For the bulk zeolite HY nanocrystals, HY-TiO2-80, HY-TiO2-100, HY-TiO2-120 

and HY-TiO2-140, the two absorption peaks around 1640 cm-1 and 1450 cm-1 were ascribed to 

pyridine adsorbed on the Brönsted acid sites and the Lewis acid sites respectively, indicated 

the presence of both Brönsted acid sites and Lewis acid sites.  

In conclusion, from these results of NH3-TPD and Py-FTIR we can find that the acidity 

of the bulk zeolite HY nanocrystals are stronger than that of the zeolite HY nanocrystals grafted 

on titania nanofibres and all of these catalysts had Brönsted acid sites and Lewis acid sites. 

Nevertheless, the as-prepared catalysts had better hydrolysis performance on cellulose than that 

of the zeolite HY nanocrystals, which is indicated that the acidic sites of catalysts do not play 

a major role in cellulose hydrolysis, but the diffusion of catalysts dominates that. 

 

3.3 Catalytic Performances 

The performance of the as-prepared catalysts were investigated by hydrolysis experiments 



 

 

 

of cellulose, and compared with the bulk zeolite HY nanocrystals. As shown in Figure 4 (left), 

the as-prepared catalysts had higher conversion of cellulose for the hydrolysis of cellulose than 

HYnano, and selectivity and yield of glucose was also higher than HYnano. Whereas the 

acidity of HYnano are stronger than that of the as-prepared catalysts and all of these catalysts 

had Brönsted acid sites and Lewis acid sites. These results indicated that the acidic sites of 

catalysts were not main factor affecting cellulose hydrolysis, but the diffusion of catalysts was 

the main fator, in this catalyst system. Since the zeolite HY nanocrystals grafted on titania 

nanofibres can hinder agglomerated of catalyst particles and enhance the diffusion of the 

catalyst, thus exposing more active sites increases its accessibility to β-1,4-glycosidic bonds 

of cellulose.  

The catalytic performance of HY-TiO2-80 and HY-TiO2-100 were better than that of HY-

TiO2-120 and HY-TiO2-140, which is ascribed to better zeolite HY nanocrystals and stable and 

well-distributed crystals on the surface of titania nanofibres at crystallization temperatures of 

80oC and 100oC. In addition, HY-TiO2-80 had the highest conversion of cellulose, combined 

with the characterization of the NH3-TPD and Py-FTIR, which may be attributed to HY-TiO2-

80 having the most strong Lewis acid sites. Terminal reaction rate and terminal generation rate 

of cellulose hydrolysis are displayed in Table S2. It could be discovered that the cellulose 

terminal reaction rates and the glucose terminal formation rates of HY-TiO2-80 catalyst and 

HY-TiO2-100 catalyst were similar, both of which were better than that of HYnano catalyst. 

These results also further indicated that the diffusion of catalyst is the main factor affecting the 

hydrolysis of cellulose. 



 

 

 

Furthermore, we also studied the effect of ultrasonic pretreatment time of cellulose on the 

hydrolysis performance of cellulose by HYnano catalyst, results are shown in Figure 4 (right). 

With the ultrasonic pretreatment time increases, the conversion of cellulose increases, and yield 

of glucose also increases except ultrasound pretreatment for 12 h, which may be attributed to 

the highest fructose yield at ultrasonic pretreatment 12h. These results are due to ultrasound 

swelling of cellulose, which increases the accessibility of catalyst acid sites to β -1,4-

glycosidic bonds of cellulose. Therefore, it is also proved that the as-prepared catalyst has better 

diffusivity, which is beneficial to the active sites of the as-prepared catalyst and the reaction of 

the reactant. As shown in Figure 5, hydrolysis of cellobiose and sawdust were investigated by 

HYnano catalyst. We can find that the hydrolysis performance of HYnano catalyst on 

cellobiose was significantly higher than that on sawdust, which is attributed to the fact that 

sawdust are insoluble in water while cellobiose is soluble in water. So, the active sites of the 

catalyst are very accessible to the glycoside bond of cellobiose and reacts with it. Hence, this 

also can testify that the diffusion of the as-prepared catalyst increases the accessibility of the 

active site and the catalytic performance is high. 
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Figure 4. (Left) Conversion of cellulose, selectivity and yield of glucose for the hydrolysis of cellulose catalyzed 

by different catalysts. Reaction conditions: 0.2 g cellulose, 0.1 g catalyst, 10ml H2O, reaction temperature 

130℃，reaction time 72 h. (Right) Conversion of cellulose, selectivity and yield of glucose for the hydrolysis of 

cellulose treated by different ultrasonic pretreatment time (4 KHz, 45oC) over HYnano. Reaction condition: 0.2g 

cellulose, 0.1g HYnano, 10ml H2O, reaction temperature 130℃，reaction time 24h. 
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Figure 5. Hydrolysis effect of cellobiose and sawdust by HYnano catalyst. Reaction conditions: 0.2 g cellulose, 

0.1 g catalyst, 10ml H2O, reaction temperature 130℃，reaction time 24 h. 



 

 

 

3.4 Mechanism discussion 

It is well known that cellulose cannot dissolve in water, but water acts as a reaction 

substrate. Therefore, cellulose and solid acid catalysts are difficult to react in the heterogeneous 

reaction, and solvent water plays a complex and critical role in cellulose hydrolysis reaction.38 

The reaction mechanism for cellulose hydrolysis in aqueous solutions is rarely reported. Base 

on the literature,19,27,38 characterization results and experimental data, the reaction mechanism 

of hydrolysis of cellulose is proposed as shown in Scheme 1. First, the long chain of cellulose 

and the as-prepared catalysts were sufficiently contacted at 130oC with agitation, since the HY 

nanocrystals are well dispersed on titania nanofibres and the as-prepared catalysts are not easily 

agglomerated. Subsequently, the Brönsted acid sites on the HY nanocrystals of as-prepared 

catalysts weakens the β-1,4-glycosidic bonds of cellulose, which is beneficial for water 

molecule to be inserted into the β-1,4-glycosidic bonds. And the Lewis acid sites can capture 

the hydroxyl group of the glucose monomer in the cellulose, which is beneficial to the 

weakening of the β-1,4-glycosidic bonds by Brönsted acid sites. Accordingly, the cellulose is 

hydrolyzed to glucose or other by-products. 

 



 

 

 

Scheme 1. Mechanisms of cellulose hydrolysis in aqueous solutions. 

3.5 Reusability 

To investigate the stability of as-prepared catalysts, the recycling of the HY-TiO2-80 

catalysts was conducted. After the first cellulose hydrolysis experiment, the remaining solids 

were washed three times with the distilled water and dried overnight at 80oC. Then, the 

cellulose of the same mass as the first hydrolysis experiment was supplemented (the mass of 

catalyst was considered not decreased), and the hydrolysis reaction was again carried out under 

the same conditions. The results indicate that the yield of glucose and the conversion of 

cellulose in the second hydrolysis experiment was 53% and 69% of that in the first hydrolysis 

experiment, respectively. The decrease in glucose yield and cellulose conversion may be due 

to the presence of hydrolytic residues that hinder some of the active sites of the catalyst and 

the loss of a large number of catalysts for recycling. As shown in Figure S2, we can see that 

all penetrating green beam of light in HYnano and a semi-penetrating green beam of light in 

HY-TiO2-100 caused by the Tyndall effect. This indicated the HY-TiO2-100 showed a good 

dispersibility in water. 

4 Conclusion 

In summary, the zeolite HY nanocrystals grafted on the titania nanofibres were 

synthesized and conducted hydrolysis of cellulose in aqueous solutions at lower temperature 

(130oC). The zeolite HY nanocrystals grafted on the titania nanofibres had a better catalytic 



 

 

 

performance for cellulose hydrolysis than the bulk zeolite HY nanocrystals, which 

demonstrates its advantage not only in activating at low temperatures (130oC), but also not 

easily agglomeration in nanocatalysts, more easily dissolved and diffused, on account of the 

zeolite HY nanocrystals grafted on titania nanofibres can expose more active sites and thus 

heighten its accessibility to β-1,4-glycosidic bonds of cellulose. Moreover, this study provides 

a new catalyst design approach to prevent nanocatalyst agglomeration and increase catalyst 

diffusivity.  
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Figure S1. SEM images of (a) titania nanofibres, (b) HYnano, (c) HY-TiO2-80, (d) HY-TiO2-100, (e) HY-TiO2-

120 and (f) HY-TiO2-140. 

 

Table S1. Quantitative analysis of NH3-TPD profiles. 

Catalysts 
Desorption peak 
temperature/oC 

 Amount of acid 
sites/ mmol g-1 Total amount of 

acid sites/ mmol g-1 
low high  weak strong 

TiO2 196 530 
 

0.035 0.020 0.055 

HYcom 190 588 
 

0.188 0.166 0.354 



 

 

 

HY-TiO2-80 225 470 
 

0.029 0.023 0.052 

HY-TiO2-100 216 458 
 

0.034 0.027 0.061 

HY-TiO2-120 228 -- 
 

0.477 -- 0.477 

HY-TiO2-140 227 -- 
 

0.472 -- 0.472 

 

  



 

 

 

 

Table S2. Terminal reaction rate and terminal generation rate.  

Catalysts 
Terminal reaction rate Terminal generation rate 

rr a(mol) rr
b (g) rg

c (mol) rg
d (g) 

HYcom 5.6 х 10-5 3.39 9.5 х 10-7 0.06 

HY-TiO2-80 6.6 х 10-5 29.14 2.5 х 10-6 1.09 

HY-TiO2-100 7.5 х 10-5 27.87 2.4 х 10-6 0.88 

HY-TiO2-120 -- 3.18 -- 0.07 

HY-TiO2-140 -- 3.15 -- 0.06 

amoles of cellulose converted divided by the ratio of the total acid amount of the catalyst to the strong 

acid amount. 

bmoles of cellulose converted divided by the total acid amount of the catalyst. 

cmoles of glucose in product divided by the ratio of the total acid amount of the catalyst to the strong 

acid amount. 

dmoles of glucose in product divided by the total acid amount of the catalyst. 

Reaction conditions: 0.2 g cellulose, 0.1 g catalyst, 10ml H2O, reaction temperature 130℃，reaction 

time 72 h. 

 

  



 

 

 

  

Figure S2. Pictures of (Left) HYnano and (Right) HY-TiO2-100 Sufficient dispersed in aqueous solutions 

after standing for 22h.  
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