2,378 research outputs found

    Histopathological characteristics of adenomyosis: structure and microstructure

    Get PDF
    Adenomyosis is a benign uterine disease that pathologically shows endometrial glands and stroma in the myometrium. There are multiple lines of evidence that adenomyosis is associated with abnormal bleeding, painful menstruation, chronic pelvic pain, infertility, and spontaneous pregnancy loss. Pathologists have researched adenomyosis by studying tissue specimens from its first report more than 150 years ago, and differing viewpoints on its pathological alterations have been advanced. However, the gold standard histopathological definition of adenomyosis remains controversial to date. The diagnostic accuracy of adenomyosis has steadily increased due to the continual identification of unique molecular markers. This article provides a brief description of the pathological aspects of adenomyosis and discusses adenomyosis categorization based on histology. The clinical findings of uncommon adenomyosis are also presented to offer a thorough and detailed pathological profile. Furthermore, we describe the histolo

    Optical Monitoring of the Seyfert Galaxy NGC 4151 and Possible Periodicities in the Historical Light Curve

    Full text link
    We report B, V, and R band CCD photometry of the Seyfert galaxy NGC 4151 obtained with the 1.0-m telescope at Weihai Observatory of Shandong University and the 1.56-m telescope at Shanghai Astronomical Observatory from 2005 December to 2013 February. Combining all available data from literature, we have constructed a historical light curve from 1910 to 2013 to study the periodicity of the source using three different methods (the Jurkevich method, the Lomb-Scargle periodogram method and the Discrete Correlation Function method). We find possible periods of P_1=4\pm0.1, P_2=7.5\pm0.3 and P_3=15.9\pm0.3 yr.Comment: 8 pages, 5 figures, Accepted by Research in Astronomy and Astrophysic

    Combined effect of Cu- and ZnO- NPs on antibiotic resistance genes in an estuarine water

    Get PDF
    Most studies of whether and how nanoparticles (NPs) affect antibiotic resistance genes (ARGs) focus on testing single NPs type. In this study, we determined the combined effect of Cu- and ZnO- NPs in the water samples collected from the Yangtze River Estuary and found the effect differs greatly from that produced by individual NPs. The results showed that the Cu- and ZnO- NPs co-exposure resulted in an enrichment of ARGs, whereas individual Cu- and ZnO- NPs exposure decreased the abundance of ARGs. Furthermore, the co-exposure of Cu- and ZnO- NPs induced obvious changes in the microbial communities compared to the control communities. Redundancy analysis suggested that the microbial community contributed the most (43.5%) to the ARG profiles, followed by dissolved metal ions (25.7%), MRGs, (19.4%), and MGEs (4.4%). Network analysis found several potential hosts (such as Mycobacterium and Escherichia coli) and implied the extent of the risk of ARG transmission into various environmental niches by these common microbes

    A controllable superconducting electromechanical oscillator with a suspended membrane

    Full text link
    We fabricate a microscale electromechanical system, in which a suspended superconducting membrane, treated as a mechanical oscillator, capacitively couples to a superconducting microwave resonator. As the microwave driving power increases, nonmonotonic dependence of the resonance frequency of the mechanical oscillator on the driving power has been observed. We also demonstrate the optical switching of the resonance frequency of the mechanical oscillator. Theoretical models for qualitative understanding of our experimental observations are presented. Our experiment may pave the way for the application of a mechanical oscillator with its resonance frequency controlled by the electromagnetic and/or optical fields, such as a microwave-optical interface and a controllable element in a superqubit-mechanical oscillator hybrid system.Comment: 8 pages,4 figure

    Transfer-free, lithography-free and fast growth of patterned CVD graphene directly on insulators by using sacrificial metal catalyst

    Get PDF
    Chemical vapor deposited graphene suffers from two problems: transfer from metal catalysts to insulators, and photoresist induced degradation during patterning. Both result in macroscopic and microscopic damages such as holes, tears, doping, and contamination, translated into property and yield dropping. We attempt to solve the problems simultaneously. A nickel thin film is evaporated on SiO2 as a sacrificial catalyst, on which surface graphene is grown. A polymer (PMMA) support is spin-coated on the graphene. During the Ni wet etching process, the etchant can permeate the polymer, making the etching efficient. The PMMA/graphene layer is fixed on the substrate by controlling the surface morphology of Ni film during the graphene growth. After etching, the graphene naturally adheres to the insulating substrate. By using this method, transfer-free, lithography-free and fast growth of graphene realized. The whole experiment has good repeatability and controllability. Compared with graphene transfer between substrates, here, no mechanical manipulation is required, leading to minimal damage. Due to the presence of Ni, the graphene quality is intrinsically better than catalyst-free growth. The Ni thickness and growth temperature are controlled to limit the number of layers of graphene. The technology can be extended to grow other two-dimensional materials with other catalysts

    Effect of supercritical CO2 on the copolymerization behavior of cyclohexene oxide/CO2 and copolymer properties with DMC/salen-Co(III) catalyst system

    Get PDF
    The copolymerization of cyclohexene oxide (CHO) and carbon dioxide (CO2) was carried out under supercritical CO2 (scCO2) conditions to afford poly (cyclohexene carbonate)(PCHC) in high yield. The scCO2 provided not only the C1 feedstock but also proved to be a very efficient solvent and processing aid for this copolymerization system. Double metal cyanide (DMC) and salen-Co(III) catalysts were employed, demonstrating excellent CO2/CHO copolymerization with high yield and high selectivity. Surprisingly, our use of scCO2 was found to significantly enhance the copolymerization efficiency and the quality of the final polymer product. Thermally stable and high molecular weight (MW) copolymers were successfully obtained. Optimization led to excellent catalyst yield (656 wt/wt, polymer/catalyst) and selectivity (over 96% toward polycarbonate) that were significantly beyond what could be achieved in conventional solvents. Moreover, detailed thermal analyses demonstrated that the PCHC copolymer produced in scCO2 exhibited higher glass transition temperatures (Tg ~114 8C) compared to polymer formed in dense phase CO2 (Tg~77 8C), and hence good thermal stability. Additionally, residual catalyst could be removed from the final polymer using scCO2, pointing toward a green method that avoids the use of conventional volatile organic based solvents for both synthesis and work-up
    corecore