56 research outputs found

    From Authority-Respect to Grassroots-Dissent: Degree-Weighted Social Learning and Convergence Speed

    Full text link
    Opinions are influenced by neighbors, with varying degrees of emphasis based on their connections. Some may value more connected neighbors' views due to authority respect, while others might lean towards grassroots perspectives. The emergence of ChatGPT could signify a new ``opinion leader'' whose views people put a lot of weight on. This study introduces a degree-weighted DeGroot learning model to examine the effects of such belief updates on learning outcomes, especially the speed of belief convergence. We find that greater respect for authority doesn't guarantee faster convergence. The influence of authority respect is non-monotonic. The convergence speed, influenced by increased authority-respect or grassroots dissent, hinges on the unity of elite and grassroots factions. This research sheds light on the growing skepticism towards public figures and the ensuing dissonance in public debate

    Extraction of Prostatic Lumina and Automated Recognition for Prostatic Calculus Image Using PCA-SVM

    Get PDF
    Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi

    The mean residence time of river water in the Canada Basin

    Get PDF
    Seawater was collected from the western Arctic Ocean for measurements of (18)O, (226)Ra and (228)Ra. The fractions of river runoff and sea ice melt-water in water samples were estimated by using delta (18)O-S-PO* tracer system. The mean residence time of river water in the Canada Basin was calculated based on the relationship between (228)Ra/(226)Ra)(A.R.) and the fractions of river runoff in the shelf and deep ocean. Our results showed that the river runoff fractions in the Canada Basin were significantly higher than those in the shelf regions, suggesting that the Canada Basin is a major storage region for Arctic river water. (228)Ra activity concentrations in the Chukchi shelf and the Beaufort shelf ranged from 0.16 to 1.22 Bq/m(3), lower than those reported for shelves in the low and middle latitudes, indicating the effect of sea ice melt-water. A good positive linear relationship was observed between (228)Ra/(226)Ra)(A.R.) and the fraction of river runoff for shelf waters, while the (228)Ra/(226)Ra)(A.R.) in the Canada Basin was located below this regressive line. The low (228)Ra/(226)Ra)(A.R.) in the Canada Basin was ascribed to (228)Ra decay during shelf waters transporting to the deep ocean. The residence time of 5.0-11.0 a was estimated for the river water in the Canada Basin, which determined the time response of surface freshening in the North Atlantic to the river runoff into the Arctic Ocean

    In situ interface engineering for probing the limit of quantum dot photovoltaic devices.

    Get PDF
    Quantum dot (QD) photovoltaic devices are attractive for their low-cost synthesis, tunable band gap and potentially high power conversion efficiency (PCE). However, the experimentally achieved efficiency to date remains far from ideal. Here, we report an in-situ fabrication and investigation of single TiO2-nanowire/CdSe-QD heterojunction solar cell (QDHSC) using a custom-designed photoelectric transmission electron microscope (TEM) holder. A mobile counter electrode is used to precisely tune the interface area for in situ photoelectrical measurements, which reveals a strong interface area dependent PCE. Theoretical simulations show that the simplified single nanowire solar cell structure can minimize the interface area and associated charge scattering to enable an efficient charge collection. Additionally, the optical antenna effect of nanowire-based QDHSCs can further enhance the absorption and boost the PCE. This study establishes a robust 'nanolab' platform in a TEM for in situ photoelectrical studies and provides valuable insight into the interfacial effects in nanoscale solar cells

    Early detection of secondary damage in ipsilateral thalamus after acute infarction at unilateral corona radiata by diffusion tensor imaging and magnetic resonance spectroscopy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional magnetic resonance (MR) imaging can identify abnormal changes in ipsilateral thalamus in patients with unilateral middle cerebral artery (MCA) infarcts. However, it is difficult to demonstrate these early changes quantitatively. Diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy (MRS) are potentially sensitive and quantitative methods of detection in examining changes of tissue microstructure and metabolism. In this study, We used both DTI and MRS to examine possible secondary damage of thalamus in patients with corona radiata infarction.</p> <p>Methods</p> <p>Twelve patients with unilateral corona radiata infarction underwent MR imaging including DTI and MRS at one week (W1), four weeks (W4), and twelve weeks (W12) after onset of stroke. Twelve age-matched controls were imaged. Mean diffusivity (MD), fractional anisotropy (FA), N-acetylaspartate (NAA), choline(Cho), and creatine(Cr) were measured in thalami.</p> <p>Results</p> <p>T1-weighted fluid attenuation inversion recovery (FLAIR), T2-weighted, and T2-FLAIR imaging showed an infarct at unilateral corona radiate but no other lesion in each patient brain. In patients, MD was significantly increased at W12, compared to W1 and W4 (all <it>P</it>< 0.05). NAA was significantly decreased at W4 compared to W1, and at W12 compared to W4 (all <it>P</it>< 0.05) in the ipsilateral thalamus. There was no significant change in FA, Cho, or Cr in the ipsilateral thalamus from W1 to W12. Spearman's rank correlation analysis revealed a significant negative correlation between MD and the peak area of NAA, Cho, and Cr at W1, W4, and W12 and a significant positive correlation of FA with NAA at W1.</p> <p>Conclusions</p> <p>These findings indicate that DTI and MRS can detect the early changes indicating secondary damage in the ipsilateral thalamus after unilateral corona radiata infarction. MRS may reveal the progressive course of damage in the ipsilateral thalamus over time.</p

    Etiologic Diagnosis of Lower Respiratory Tract Bacterial Infections Using Sputum Samples and Quantitative Loop-Mediated Isothermal Amplification

    Get PDF
    Etiologic diagnoses of lower respiratory tract infections (LRTI) have been relying primarily on bacterial cultures that often fail to return useful results in time. Although DNA-based assays are more sensitive than bacterial cultures in detecting pathogens, the molecular results are often inconsistent and challenged by doubts on false positives, such as those due to system- and environment-derived contaminations. Here we report a nationwide cohort study on 2986 suspected LRTI patients across P. R. China. We compared the performance of a DNA-based assay qLAMP (quantitative Loop-mediated isothermal AMPlification) with that of standard bacterial cultures in detecting a panel of eight common respiratory bacterial pathogens from sputum samples. Our qLAMP assay detects the panel of pathogens in 1047(69.28%) patients from 1533 qualified patients at the end. We found that the bacterial titer quantified based on qLAMP is a predictor of probability that the bacterium in the sample can be detected in culture assay. The relatedness of the two assays fits a logistic regression curve. We used a piecewise linear function to define breakpoints where latent pathogen abruptly change its competitive relationship with others in the panel. These breakpoints, where pathogens start to propagate abnormally, are used as cutoffs to eliminate the influence of contaminations from normal flora. With help of the cutoffs derived from statistical analysis, we are able to identify causative pathogens in 750 (48.92%) patients from qualified patients. In conclusion, qLAMP is a reliable method in quantifying bacterial titer. Despite the fact that there are always latent bacteria contaminated in sputum samples, we can identify causative pathogens based on cutoffs derived from statistical analysis of competitive relationship

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A Low-Complexity Ordered Statistics Decoding Algorithm for Short Polar Codes

    No full text
    In this paper, we propose a low-complexity ordered statistics decoding (OSD) algorithm called threshold-based OSD (TH-OSD) that uses a threshold on the discrepancy of the candidate codewords to speed up the decoding of short polar codes. To determine the threshold, we use the probability distribution of the discrepancy value of the maximal likelihood codeword with a predefined parameter controlling the trade-off between the error correction performance and the decoding complexity. We also derive an upper-bound of the word error rate (WER) for the proposed algorithm. The complexity analysis shows that our algorithm is faster than the conventional successive cancellation (SC) decoding algorithm in mid-to-high signal-to-noise ratio (SNR) situations and much faster than the SC list (SCL) decoding algorithm. Our addition of a list approach to our proposed algorithm further narrows the error correction performance gap between our TH-OSD and OSD. Our simulation results show that, with appropriate thresholds, our proposed algorithm achieves performance close to OSD&#8217;s while testing significantly fewer codewords than OSD, especially with low SNR values. Even a small list is sufficient for TH-OSD to match OSD&#8217;s error rate in short-code scenarios. The algorithm can be easily extended to longer code lengths

    Effects of ocean eddies on the tropical storm Roanu intensity in the Bay of Bengal.

    No full text
    A tropical storm (TS) Roanu occurred in northern Sri Lanka in 2016, which transported northwards along the west coast of the Bay of Bengal (BoB). During the development of the TS, ocean eddies on its track had an important effect on the intensity of Roanu. The dynamic mechanism was investigated with multisource reanalysis and Argo float data in this study. The results show that ocean eddies were the main reason why Roanu first enhanced, weakened, and then enhanced again. Warm eddy W1 supports the initial development of the TS, cold eddy C1 weakens Roanu, and warm eddy W2 continues to support Roanu. On May 19, 2016, the maximum average latent heat flux over W1 was 260.85 w/m2, while that of C1 was only 200.71 w/m2. After the passage of Roanu, the tropical cyclone heat potential (TCHP) of eddies significantly decreased. The TCHP of W1, W2, C1 and C2 decreased by 20.95 kJ/cm2, 11.07 kJ/cm2, 29.82 kJ/cm2, 9.31 kJ/cm2, respectively. The mixed layer of warm eddies deepened much more than that of cold eddies, supporting Roanu development. In addition, changes in potential vorticity (PV) values caused by the disturbance of eddies may also reflect changes in the TS intensity. This study offers new insights on the influence of ocean eddies in regulating the development of tropical cyclone (TC) in the BoB

    Risk Mitigation and Construction Control for Effective Underwater Recovery of an EPB Shield: A Case Study of the First Metro Tunnel in Tel Aviv

    No full text
    Shield recovery in water-rich sand strata is a challenging issue in the field of shield tunnel engineering, especially when the end of the shaft cannot be reinforced by jet grouting or freezing or when the shield cannot be supported with a steel sleeve. Therefore, it is important to develop an effective recovery approach and adopt suitable techniques to control the risks. In this study, a new method based on filling the receiving shaft with water is proposed for the underwater recovery of an earth pressure balance (EPB) shield with zero end reinforcement from a metro tunnel in Tel Aviv, Israel. Several additional techniques are used to ensure safe recovery of the shield, including the design of a concrete cradle, drilling of pressure relief holes, control of excavation parameters, screw conveyor sealing, portal sealing, tail sealing, and grouting. Furthermore, according to the actual situation on site, filling the shaft with water to 1 m above the water level in the strata can prevent the fine sand from percolating into the shaft. Before the cutterhead approaches the underground diaphragm wall, the driving attitude should be strictly controlled, and the edge hob should be inspected for wear. The necessary thrust of shield tunneling in the underground diaphragm wall and shaft is calculated theoretically. In order to ensure the deformation control of the underground diaphragm wall and the smooth tunneling of the shield, the thrust of the shield excavating the underground diaphragm wall will not be larger than 12 000 kN, and the penetration degree will be limited to 3 mm/r. Qualitative observations and measurements of surface subsidence in the metro tunnel indicate that these risk mitigation techniques are effective and suitable for the underwater recovery of EPB shields in water-rich sand strata
    corecore