439 research outputs found
Effect of bainite layer by LSMCIT on wear resistance of medium-carbon bainite steel at different temperatures
In this work, bainite layer was prepared by Laser surface melting combined with isothermal treatment (LSMCIT) at 250ºC. The microstructures of the samples were analyzed by scanning electron microscopy (SEM), X-ray Diffraction (XRD) and transmission electron microscopy (TEM). Their wear resistances at 20ºC, 100ºC and 200ºC were measured using reciprocating tribometer. After the wear test, the confocal laser scanning microscope and SEM were used to characterize the topography of all abrasion surfaces, and the phase transformations occurred on the contact surfaces were analyzed by XRD. The results show that the microstructure of the LSMCIT sample has been refined to nanoscale. The wear volume reduction ratio of LSMCIT sample is 40.9% at 20ºC. The wear resistances of the samples are decreased with increasing of the temperature, however, the decrease in amplitude of the bainite is relatively small. The harder surface of the LSMCIT sample can provides higher mechanical support, and the white-etching layer on surface are difficult to remove by the reciprocating friction. The wear resistances of the LSMCIT samples at 20ºC, 100ºC and 200ºC are excellent, which shows the wide temperature ranges in wear applications
A new approach for obtaining rapid uniformity in rice (Oryza sativa L.) via a 3x x 2x cross
A triploid (2n = 3x = 36) rice plant was obtained by screening a twin seedling population in which each seed germinated to two or three sprouts that were then crossed with diploid plants. One diploid plant was chosen among the various F1 progenies and developed into an F 2 population via self-pollination. Compared with the control variety Shanyou 63, this F 2 population had a stable agronomical performance in field trials, as confirmed by the F-test. The stability of the F 2 population was further substantiated by molecular analysis with simple sequence repeat markers. Specifically, of 160 markers assayed, 37 (covering all 12 chromosomes) were polymorphic between the parental lines. Testing the F 1 hybrid individually with these markers showed that each PCR product had only a single band instead of two bands from each parent. The bands were identical to either maternal (23 markers) or paternal (eight markers) bands or distinct from both parents (six markers). The amplified bands of all 60 randomly selected F 2 plants were uniform and identical to those of the F 1 hybrid. These results suggest that the F 1 plant is a non-segregating hybrid and that a stable F 2 population was obtained. This novel system provides an efficient means for shortening the cycle of hybrid rice seed production
Microstructure and wear resistance of (Nb,Ti)C carbide reinforced Fe matrix coating with different Ti contents and interfacial properties of (Nb,Ti)C/α-Fe
In this work, the (Nb,Ti)C reinforced Fe matrix coatings were prepared by gas metal arc welding (GMAW) hardfacing technology. The microstructure, hardness and wear resistance of (Nb,Ti)C reinforced coatings with different Ti contents were investigated by experiments. The interfacial properties of (Nb,Ti)C/α-Fe interfaces were calculated by first principles method based on density functional theory (DFT). The experiment results show that as the Ti content in the coating changes from 0.15 to 0.41 wt%, the average diameter of NbC primary carbide grains decreases from 3.2 μm to 1.7 μm and their amount increase from 0.35 to 0.51 μm−2. The coating with 0.15 wt% Ti performs the lowest wear loss, which is 0.47 g/N ∗ cm2. From the calculated results, the interfacial combination between carbide and matrix are improved after Ti addition. The adhesion work of (Nb,Ti)C/Fe interfaces show the following order: CNb-Fe < NbC-Fe < CTiNb-Fe < CNbTi-Fe < NbTiC-Fe < TiNbC-Fe. In CTiNb-Fe, CNbTi-Fe and CNb-Fe surfaces, weak Fe-M covalent bonds are formed at the interfaces. In NbC-Fe, NbTiC-Fe and TiNbC-Fe surfaces, strong Fe–C and M-C covalent bond can be found at (Nb,Ti)C/α-Fe interfaces, besides, Fe–C ionic bonds are also formed
IDN2 and Its Paralogs Form a Complex Required for RNA–Directed DNA Methylation
IDN2/RDM12 has been previously identified as a component of the RNA–directed DNA methylation (RdDM) machinery in Arabidopsis thaliana, but how it functions in RdDM remains unknown. By affinity purification of IDN2, we co-purified two IDN2 paralogs IDP1 and IDP2 (IDN2 PARALOG 1 and 2). The coiled-coil domain between the XS and XH domains of IDN2 is essential for IDN2 homodimerization, whereas the IDN2 C-terminal XH domain but not the coiled-coil domain is required for IDN2 interaction with IDP1 and IDP2. By introducing the wild-type IDN2 sequence and its mutated derivatives into the idn2 mutant for complementation testing, we demonstrated that the previously uncharacterized IDN2 XH domain is required for the IDN2-IDP1/IDP2 complex formation as well as for IDN2 function. IDP1 is required for de novo DNA methylation, siRNA accumulation, and transcriptional gene silencing, whereas IDP2 has partially overlapping roles with IDP1. Unlike IDN2, IDP1 and IDP2 are incapable of binding double-stranded RNA, suggesting that the roles of IDP1 and IDP2 are different from those of IDN2 in the IDN2-IDP1/IDP2 complex and that IDP1 and IDP2 are essential for the functioning of the complex in RdDM
Nodal s± pairing symmetry in an iron-based superconductor with only hole pockets
The origin of high-temperature superconductivity in iron-based superconductors is still not understood; determination of the pairing symmetry is essential for understanding the superconductivity mechanism. In the iron-based superconductors that have hole pockets around the Brillouin zone centre and electron pockets around the zone corners, the pairing symmetry is generally considered to be s±, which indicates a sign change in the superconducting gap between the hole and electron pockets. For the iron-based superconductors with only hole pockets, however, a couple of pairing scenarios have been proposed, but the exact symmetry is still controversial. Here we determine that the pairing symmetry in KFe2As2—which is a prototypical iron-based superconductor with hole pockets both around the zone centre and around the zone corners—is also of the s± type. Our laser-based angle-resolved photoemission measurements have determined the superconducting gap distribution and identified the locations of the gap nodes on all the Fermi surfaces around the zone centres and the zone corners. These results unify the pairing symmetry in hole-doped iron-based superconductors and point to spin fluctuation as the pairing glue in generating superconductivity
Fine Mapping of the Psoriasis Susceptibility Locus PSORS1 Supports HLA-C as the Susceptibility Gene in the Han Chinese Population
PSORS1 (psoriasis susceptibility gene 1) is a major susceptibility locus for psoriasis. Several fine-mapping studies have highlighted a 300-kb candidate region of PSORS1 where multiple biologically plausible candidate genes were suggested. The most recent study has indicated HLA-Cw6 as the primary PSORS1 risk allele within the candidate region in a Caucasian population. In this study, a family-based association analysis of the PSORS1 locus was performed by analyzing 10 polymorphic microsatellite markers from the PSORS1 region as well as HLA-B, HLA-C and CDSN loci in 163 Chinese families of psoriasis. Five marker loci show strong evidence (P<10−3), and one marker locus shows weak evidence (P = 0.04) for association. The haplotype cluster analysis showed that all the risk haplotypes are Cw6 positive and share a 369-kb region of homologous marker alleles which carries all the risk alleles, including HLA-Cw6 and CDSN*TTC, identified in this study. The recombinant haplotype analysis of the HLA-Cw6 and CDSN*TTC alleles in 228 Chinese families showed that the HLA-Cw6−/CDSN*TTC+ recombinant haplotype is clearly not associated with risk for psoriasis (T∶NT = 29:57, p = 0.0025) in a Chinese population, suggesting that the CDSN*TTC allele itself does not confer risk without the presence of the HLA-Cw6 allele. The further exclusion analysis of the non-risk HLA-Cw6−/CDSN*TTC+ recombinant haplotypes with common recombination breakpoints has allowed us to refine the location of PSORS1 to a small candidate region. Finally, we performed a conditional linkage analysis and showed that the HLA-Cw6 is a major risk allele but does not explain the full linkage evidence of the PSORS1 locus in a Chinese population. By performing a series of family-based association analyses of haplotypes as well as an exclusion analysis of recombinant haplotypes, we were able to refine the PSORS1 gene to a small critical region where HLA-C is a strong candidate to be the PSORS1 susceptibility gene
Bisphenol A and 17β-Estradiol Promote Arrhythmia in the Female Heart via Alteration of Calcium Handling
There is wide-spread human exposure to bisphenol A (BPA), a ubiquitous estrogenic endocrine disruptor that has been implicated as having potentially harmful effects on human heart health. Higher urine BPA concentrations have been shown to be associated with cardiovascular diseases in humans. However, neither the nature nor the mechanism(s) of BPA action on the heart are understood. leak suppressed estrogen-induced triggered activities. The rapid response of female myocytes to estrogens was abolished in an estrogen receptor (ER) β knockout mouse model. leak. Our study provides the first experimental evidence suggesting that exposure to estrogenic endocrine disrupting chemicals and the unique sensitivity of female hearts to estrogens may play a role in arrhythmogenesis in the female heart
- …