143 research outputs found
Mobile elements and primate genomic variation
Mobile elements comprise approximately 50% of the human genome and have significant influence on human genomic architecture and stability. SINEs (Short INterspersed Elements) are a class of non-autonomous mobile elements that are usually \u3c500 bp in length and have no open reading frames. As the most successful SINEs in primate, Alu elements have expanded to more than one million copies in the human genome. To understand the biology of Alu family of mobile elements, we first analyzed the AluYd lineage in the human genome. Computational analysis of the AluYd lineage from the human genome draft sequence resulted in the identification of two new AluYd subfamilies, Yd3 and Yd6. Two hundred AluYd3 and Yd6 loci were screened to determine their phylogenetic origin and associated levels of human genomic diversity. Second, we examined the mutation spectra of Alu elements in the human genome. We analyzed the mutation patterns for 5296 Alu elements comprising 20 subfamilies. Our results indicate a relatively constant CpG versus non-CpG substitution ratio of ~6 for the young (AluY) and intermediate (AluS) Alu subfamilies and a more complex non-linear relationship when older (AluJ) subfamilies were included in the analysis. This study provides an updated, more accurate estimate of the disparity in the rate of mutation within Alu elements and provides a better understanding of the CpG decay process during primate evolution. Third, we analyzed the evolutionary history of AluYb lineage. We show that the major AluYb lineage expansion is human specific while the lineage originated in early hominoid evolution. We suggest that the evolutionary success of the Alu family may be driven at least in part by “stealth driver” elements that maintain low retrotranspositional activity over extended periods of time and occasionally produce short-lived hyperactive copies responsible for the formation and remarkable expansion of Alu elements within the genome. Finally, we identified 285 Alu insertion loci that have Alu elements integrated in sixteen different Old World monkey genomes at various time and utilized these elements to construct a phylogenetic tree of Old World monkeys. Our study represents one of the most robust Cercopithecid molecular phylogenies reported to date
Identification of polymorphic SVA retrotransposons using a mobile element scanning method for SVA (ME-Scan-SVA)
SVA insertions overlapping protein coding regions. (XLSX 11Â kb
SINEs of a nearly perfect character
Mobile elements have been recognized as powerful tools for phylogenetic and population-level analyses. However, issues regarding potential sources of homoplasy and other misleading events have been raised. We have collected available data for all phylogenetic and population level studies of primates utilizing Alu insertion data and examined them for potentially homoplasious and other misleading events. Very low levels of each potential confounding factor in a phylogenetic or population analysis (i.e., lineage sorting, parallel insertions, and precise excision) were found. Although taxa known to be subject to high levels of these types of events may indeed be subject to problems when using SINE analysis, we propose that most taxa will respond as the order Primates has-by the resolution of several long-standing problems observed using sequence-based methods. © 2006 Society of Systematic Biologists
Mobile DNA elements in primate and human evolution
Roughly 50% of the primate genome consists of mobile, repetitive DNA sequences such as Alu and LINE1 elements. The causes and evolutionary consequences of mobile element insertion, which have received considerable attention during the past decade, are reviewed in this article. Because of their unique mutational mechanisms, these elements are highly useful for answering phylogenetic questions. We demonstrate how they have been used to help resolve a number of questions in primate phylogeny, including the human-chimpanzee- gorilla trichotomy and New World primate phylogeny. Alu and LINE1 element insertion polymorphisms have also been analyzed in human populations to test hypotheses about human evolution and population affinities and to address forensic issues. Finally, these elements have had impacts on the genome itself. We review how they have influenced fundamental ongoing processes like nonhomologous recombination, genomic deletion, and X chromosome inactivation. © 2007 Wiley-Liss, Inc
Alu element mutation spectra: Molecular clocks and the effect of DNA methylation
In primate genomes more than 40% of CpG islands are found within repetitive elements. With more than one million copies in the human genome, the Alu family of retrotransposons represents the most successful short interspersed element (SINE) in primates and CpG dinucleotides make up about 20% of Alu sequences. It is generally thought that CpG dinucleotides mutate approximately ten times faster than other dinucleotides due to cytosine methylation and the subsequent deamination and conversion of C→T. However, the disparity of Alu subfamily age estimations based upon CpG or non-CpG substitution density indicates a more complex relationship between CpG and non-CpG substitutions within the Alu elements. Here we report an analysis of the mutation patterns for 5296 Alu elements comprising 20 subfamilies. Our results indicate a relatively constant CpG versus non-CpG substitution ratio of ∼6 for the young (AluY) and intermediate (AluS) Alu subfamilies. However, a more complex non-linear relationship between CpG and non-CpG substitutions was observed when old (AluJ) subfamilies were included in the analysis. These patterns may be the result of the slowdown of the neutral mutation rate during primate evolution and/or an increase in the CpG mutation rate as the consequence of increased DNA methylation in response to a burst of retrotransposition activity ∼35 million years ago. © 2004 Elsevier Ltd. All rights reserved
Mobile element scanning (ME-Scan) by targeted high-throughput sequencing
<p>Abstract</p> <p>Background</p> <p>Mobile elements (MEs) are diverse, common and dynamic inhabitants of nearly all genomes. ME transposition generates a steady stream of polymorphic genetic markers, deleterious and adaptive mutations, and substrates for further genomic rearrangements. Research on the impacts, population dynamics, and evolution of MEs is constrained by the difficulty of ascertaining rare polymorphic ME insertions that occur against a large background of pre-existing fixed elements and then genotyping them in many individuals.</p> <p>Results</p> <p>Here we present a novel method for identifying nearly all insertions of a ME subfamily in the whole genomes of multiple individuals and simultaneously genotyping (for presence or absence) those insertions that are variable in the population. We use ME-specific primers to construct DNA libraries that contain the junctions of all ME insertions of the subfamily, with their flanking genomic sequences, from many individuals. Individual-specific "index" sequences are designed into the oligonucleotide adapters used to construct the individual libraries. These libraries are then pooled and sequenced using a ME-specific sequencing primer. Mobile element insertion loci of the target subfamily are uniquely identified by their junction sequence, and all insertion junctions are linked to their individual libraries by the corresponding index sequence. To test this method's feasibility, we apply it to the human <it>AluYb8 </it>and <it>AluYb9 </it>subfamilies. In four individuals, we identified a total of 2,758 <it>AluYb8 </it>and <it>AluYb9 </it>insertions, including nearly all those that are present in the reference genome, as well as 487 that are not. Index counts show the sequenced products from each sample reflect the intended proportions to within 1%. At a sequencing depth of 355,000 paired reads per sample, the sensitivity and specificity of ME-Scan are both approximately 95%.</p> <p>Conclusions</p> <p>Mobile Element Scanning (ME-Scan) is an efficient method for quickly genotyping mobile element insertions with very high sensitivity and specificity. In light of recent improvements to high-throughput sequencing technology, it should be possible to employ ME-Scan to genotype insertions of almost any mobile element family in many individuals from any species.</p
A SINE-based dichotomous key for primate identification
For DNA samples or \u27divorced\u27 tissues, identifying the organism from which they were taken generally requires some type of analytical method. The ideal approach would be robust even in the hands of a novice, requiring minimal equipment, time, and effort. Genotyping SINEs (Short INterspersed Elements) is such an approach as it requires only PCR-related equipment, and the analysis consists solely of interpreting fragment sizes in agarose gels. Modern primate genomes are known to contain lineage-specific insertions of Alu elements (a primate-specific SINE); thus, to demonstrate the utility of this approach, we used members of the Alu family to identify DNA samples from evolutionarily divergent primate species. For each node of a combined phylogenetic tree (56 species; n = 8 [Hominids]; 11 [New World monkeys]; 21 [Old World monkeys]; 2 [Tarsiformes]; and, 14 [Strepsirrhines]), we tested loci (\u3e 400 in total) from prior phylogenetic studies as well as newly identified elements for their ability to amplify in all 56 species. Ultimately, 195 loci were selected for inclusion in this Alu-based key for primate identification. This dichotomous SINE-based key is best used through hierarchical amplification, with the starting point determined by the level of initial uncertainty regarding sample origin. With newly emerging genome databases, finding informative retrotransposon insertions is becoming much more rapid; thus, the general principle of using SINEs to identify organisms is broadly applicable. © 2006 Elsevier B.V. All rights reserved
Mobile element scanning (ME-Scan) identifies thousands of novel Alu insertions in diverse human populations
Alu retrotransposons are the most numerous and active mobile elements in humans, causing genetic disease and creating genomic diversity. Mobile element scanning (ME-Scan) enables comprehensive and affordable identification of mobile element insertions (MEI) using targeted high-throughput sequencing of multiplexed MEI junction libraries. In a single experiment, ME-Scan identifies nearly all AluYb8 and AluYb9 elements, with high sensitivity for both rare and common insertions, in 169 individuals of diverse ancestry. ME-Scan detects heterozygous insertions in single individuals with 91% sensitivity. Insertion presence or absence states determined by ME-Scan are 95% concordant with those determined by locus-specific PCR assays. By sampling diverse populations from Africa, South Asia, and Europe, we are able to identify 5799 Alu insertions, including 2524 novel ones, some of which occur in exons. Sub-Saharan populations and a Pygmy group in particular carry numerous intermediate-frequency Alu insertions that are absent in non-African groups. There is a significant dearth of exon-interrupting insertions among common Alu polymorphisms, but the density of singleton Alu insertions is constant across exonic and nonexonic regions. In one case, a validated novel singleton Alu interrupts a proteincoding exon of FAM187B. This implies that exonic Alu insertions are generally deleterious and thus eliminated by natural selection, but not so quickly that they cannot be observed as extremely rare variants. © 2013, Published by Cold Spring Harbor Laboratory Press
A mobile element-based evolutionary history of guenons (tribe Cercopithecini)
BACKGROUND: Guenons (tribe Cercopithecini) are a species-rich group of primates that have attracted considerable attention from both primatologists and evolutionary biologists. The complex speciation pattern has made the elucidation of their relationships a challenging task, and many questions remain unanswered. SINEs are a class of non-autonomous mobile elements and are essentially homoplasy-free characters with known ancestral states, making them useful genetic markers for phylogenetic studies. RESULTS: We identified 151 novel Alu insertion loci from 11 species of tribe Cercopithecini, and used these insertions and 17 previously reported loci to infer a phylogenetic tree of the tribe Cercopithecini. Our results robustly supported the following relationships: (i) Allenopithecus is the basal lineage within the tribe; (ii) Cercopithecus lhoesti (L'Hoest's monkey) forms a clade with Chlorocebus aethiops (African green monkey) and Erythrocebus patas (patas monkey), supporting a single arboreal to terrestrial transition within the tribe; (iii) all of the Cercopithecus except C. lhoesti form a monophyletic group; and (iv) contrary to the common belief that Miopithecus is one of the most basal lineages in the tribe, M. talapoin (talapoin) forms a clade with arboreal members of Cercopithecus, and the terrestrial group (C. lhoesti, Chlorocebus aethiops and E. patas) diverged from this clade after the divergence of Allenopithecus. Some incongruent loci were found among the relationships within the arboreal Cercopithecus group. Several factors, including incomplete lineage sorting, concurrent polymorphism and hybridization between species may have contributed to the incongruence. CONCLUSION: This study presents one of the most robust phylogenetic hypotheses for the tribe Cercopithecini and demonstrates the advantages of SINE insertions for phylogenetic studies
- …