182 research outputs found

    Facial paralysis in cerebral infarction: A case of misdiagnosis and literature review

    Get PDF

    Advances in the application of deep learning methods to digital rock technology

    Get PDF
    Digital rock technology is becoming essential in reservoir engineering and petrophysics. Three-dimensional digital rock reconstruction, image resolution enhancement, image segmentation, and rock parameters prediction are all crucial steps in enabling the overall analysis of digital rocks to overcome the shortcomings and limitations of traditional methods. Artificial intelligence technology, which has started to play a significant role in many different fields, may provide a new direction for the development of digital rock technology. This work presents a systematic review of the deep learning methods that are being applied to tasks within digital rock analysis, including the reconstruction of digital rocks, high-resolution image acquisition, grayscale image segmentation, and parameter prediction. The results of these applications prove that state-of-the-art deep learning methods can help advance and provide a new approach to scientific knowledge in the field of digital rocks. This work also discusses future research and developments on the application of deep learning methods to digital rock technology.Cited as: Li, X., Li, B., Liu, F., Li, T., Nie, X. Advances in the application of deep learning methods to digital rock technology. Advances in Geo-Energy Research, 2023, 8(1): 5-18. https://doi.org/10.46690/ager.2023.04.0

    Demonstration of the First 4H-SiC EUV Detector with Large Detection Area

    Get PDF
    Ultraviolet (UV) and Extreme Ultraviolet (EUV) detectors are very attractive in astronomy, photolithography and biochemical applications. For EUV applications, most of the semiconductor detectors based on PN or PIN structures suffer from the very short penetration depth. Most of the carries are absorbed at the surface and recombined there due to the high surface recombination before reach the depletion region, resulting very low quantum efficiency. On the other hand, for Schottky structures, the active region starts from the surface and carriers generated from the surface can be efficiently collected. 4H-Sic has a bandgap of 3.26eV and is immune to visible light background noise. Also, 4H-Sic detectors usually have very good radiation hardness and very low noise, which is very important for space applications where the signal is very weak. The E W photodiodes presented in this paper are based on Schottky structures. Platinum (Pt) and Nickel (Ni) are selected as the Schottky contact metals, which have the highest electron work functions (5.65eV and 5.15eV, respectively) among all the known metals on 4H-Sic

    Aphid Performance Changes with Plant Defense Mediated by \u3cem\u3eCucumber mosaic virus\u3c/em\u3e Titer

    Get PDF
    Background: Cucumber mosaic virus (CMV) causes appreciable losses in vegetables, ornamentals and agricultural crops. The green peach aphid, Myzus persicae Sulzer (Aphididae) is one of the most efficient vectors for CMV. The transmission ecology of aphid-vectored CMV has been well investigated. However, the detailed description of the dynamic change in the plant-CMV-aphid interaction associated with plant defense and virus epidemics is not well known. Results: In this report, we investigated the relationship of virus titer with plant defense of salicylic acid (SA) and jasmonic acid (JA) during the different infection time and their interaction with aphids in CMV-infected tobacco plants. Our results showed that aphid performance changed with virus titer and plant defense on CMV-inoculated plants. At first, plant defense was low and aphid number increased gradually. The plant defense of SA signaling pathway was induced when virus titer was at a high level, and aphid performance was correspondingly reduced. Additionally, the winged aphids were increased. Conclusion: Our results showed that aphid performance was reduced due to the induced plant defense mediated by Cucumber mosaic virus titer. Additionally, some wingless aphids became to winged aphids. In this way CMV could be transmitted with the migration of winged aphids. We should take measures to prevent aphids in the early stage of their occurrence in the field to prevent virus outbreak

    Detection and Epidemic Dynamic of ToCV and CCYV with \u3cem\u3eBemisia tabaci\u3c/em\u3e and Weed in Hainan of China

    Get PDF
    Background: In recent years, two of the crinivirus, Tomato chlorosis virus (ToCV) and Cucurbit chlorotic yellows virus (CCYV) have gained increasing attention due to their rapid spread and devastating impacts on vegetable production worldwide. Both of these viruses are transmitted by the sweet potato whitefly, Bemisia tabaci (Gennadius), in a semi-persistent manner. Up to now, there is still lack of report in Hainan, the south of China. Methods: We used observational and experimental methods to explore the prevalence and incidence dynamic of CCYV and ToCV transmitted by whiteflies in Hainan of China. Results: In 2016, the chlorosis symptom was observed in the tomato and cucumber plants with a large number of B. tabaci on the infected leaves in Hainan, China, with the incidence rate of 69.8% and 62.6% on tomato and cucumber, respectively. Based on molecular identification, Q biotype was determined with a viruliferous rate of 65.0% and 55.0% on the tomato and cucumber plants, respectively. The weed, Alternanthera philoxeroides near the tomato and cucumber was co-infected by the two viruses. Furthermore, incidence dynamic of ToCV and CCYV showed a close relationship with the weed, Alternanthera philoxeroides, which is widely distributed in Hainan. Conclusion: Our results firstly reveal that the weed, A. philoxeroides is infected by both ToCV and CCYV. Besides, whiteflies showed a high viruliferous rate of ToCV and CCYV. Hainan is an extremely important vegetable production and seed breeding center in China. If the whitefly can carry these two viruses concurrently, co-infection in their mutual host plants can lead to devastating losses in the near future

    Face Restoration via Plug-and-Play 3D Facial Priors

    Full text link
    State-of-the-art face restoration methods employ deep convolutional neural networks (CNNs) to learn a mapping between degraded and sharp facial patterns by exploring local appearance knowledge. However, most of these methods do not well exploit facial structures and identity information, and only deal with task-specific face restoration (e.g.,face super-resolution or deblurring). In this paper, we propose cross-tasks and cross-models plug-and-play 3D facial priors to explicitly embed the network with the sharp facial structures for general face restoration tasks. Our 3D priors are the first to explore 3D morphable knowledge based on the fusion of parametric descriptions of face attributes (e.g., identity, facial expression, texture, illumination, and face pose). Furthermore, the priors can easily be incorporated into any network and are very efficient in improving the performance and accelerating the convergence speed. Firstly, a 3D face rendering branch is set up to obtain 3D priors of salient facial structures and identity knowledge. Secondly, for better exploiting this hierarchical information (i.e., intensity similarity, 3D facial structure, and identity content), a spatial attention module is designed for image restoration problems. Extensive face restoration experiments including face super-resolution and deblurring demonstrate that the proposed 3D priors achieve superior face restoration results over the state-of-the-art algorithm

    Protective effects of luteolin on restraint stress-induced liver damage in mice

    Get PDF
    The present study was designed to investigate the protective effects of luteolin, a flavonoid, against acute immobilization-induced liver damage in mice. Mice were immobilized for a period of 6 h daily for three consecutive weeks. Luteolin (25 or 100 mg/kg, i.g.) was administered 30 min before subjecting the animals to restraint stress (RS). Our experiment showed that RS could induce liver damage, with an increase in glutamic-pyruvic transaminase (GPT) and glutamic-oxaloacetic transaminase (GOT) in the liver tissue. Furthermore, the changes of anti-oxidative capacity in liver tissue were also measured. The changes of malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD) and catalase activities (CAT) of stress group were significantly different from those in the control group. However, these changes in stress low and high-doses of luteolin modulation group were improved. These results demonstrated that luteolin has a protective effect against RS-induced liver damage through scavenging both free radicals activity and lipid peroxidation inhibitory effect.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    NSs, the Silencing Suppressor of Tomato Spotted Wilt Orthotospovirus, Interferes with JA-Regulated Host Terpenoids Expression to Attract \u3cem\u3eFrankliniella occidentalis\u3c/em\u3e

    Get PDF
    Tomato spotted wilt orthotospovirus (TSWV) causes serious crop losses worldwide and is transmitted by Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). NSs protein is the silencing suppressor of TSWV and plays an important role in virus infection, cycling, and transmission process. In this research, we investigated the influences of NSs protein on the interaction of TSWV, plants, and F. occidentalis with the transgenic Arabidopsis thaliana. Compared with the wild-type Col-0 plant, F. occidentalis showed an increased number and induced feeding behavior on transgenic Arabidopsis thaliana expressing exogenous NSs. Further analysis showed that NSs reduced the expression of terpenoids synthesis-related genes and the content of monoterpene volatiles in Arabidopsis. These monoterpene volatiles played a repellent role in respect to F. occidentalis. In addition, the expression level of plant immune-related genes and the content of the plant resistance hormone jasmonic acid (JA) in transgenic Arabidopsis were reduced. The silencing suppressor of TSWV NSs alters the emission of plant volatiles and reduces the JA-regulated plant defenses, resulting in enhanced attractiveness of plants to F. occidentalis and may increase the transmission probability of TSWV

    Odor, Not Performance, Dictates \u3cem\u3eBemisia tabaci\u3c/em\u3e\u27s Selection Between Healthy and Virus Infected Plants

    Get PDF
    Although, insect herbivores are generally thought to select hosts that favor the fitness of their progeny, this “mother-knows-best” hypothesis may be challenged by the presence of a plant virus. Our previous study showed that the whitefly, Bemisia tabaci, the obligate vector for transmitting Tomato yellow leaf curl virus (TYLCV), preferred to settle and oviposit on TYLCV-infected rather than healthy host plant, Datura stramonium. The performances of B. tabaci larvae and adults were indeed improved on virus-infected D. stramonium, which is consistent with “mother-knows-best” hypothesis. In this study, B. tabaci Q displayed the same preference to settle and oviposit on Tomato spotted wilt virus (TSWV)-infected host plants, D. stramonium and Capsicum annuum, respectively. As a non-vector of TSWV, however, insect performance was impaired since adult body size, longevity, survival, and fecundity were reduced in TSWV infected D. stramonium. This appears to be an odor-mediated behavior, as plant volatile profiles are modified by viral infection. Infected plants have reduced quantities of o-xylene and α-pinene, and increased levels of phenol and 2-ethyl-1-hexanol in their headspace. Subsequent behavior experiments showed that o-xylene and α-pinene are repellant, while phenol and 2-ethyl-1-hexanol are attractive. This indicates that the preference of B. tabaci for virus-infected plants is modulated by the dynamic changes in the volatile profiles rather than the subsequent performances on virus-infected plants
    corecore