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Tomato spotted wilt orthotospovirus (TSWV) causes serious crop losses worldwide
and is transmitted by Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae).
NSs protein is the silencing suppressor of TSWV and plays an important role in
virus infection, cycling, and transmission process. In this research, we investigated
the influences of NSs protein on the interaction of TSWV, plants, and F. occidentalis
with the transgenic Arabidopsis thaliana. Compared with the wild-type Col-0 plant,
F. occidentalis showed an increased number and induced feeding behavior on
transgenic Arabidopsis thaliana expressing exogenous NSs. Further analysis showed
that NSs reduced the expression of terpenoids synthesis-related genes and the content
of monoterpene volatiles in Arabidopsis. These monoterpene volatiles played a repellent
role in respect to F. occidentalis. In addition, the expression level of plant immune-related
genes and the content of the plant resistance hormone jasmonic acid (JA) in transgenic
Arabidopsis were reduced. The silencing suppressor of TSWV NSs alters the emission
of plant volatiles and reduces the JA-regulated plant defenses, resulting in enhanced
attractiveness of plants to F. occidentalis and may increase the transmission probability
of TSWV.

Keywords: tomato spotted wilt orthotospovirus, NSs, Frankliniella occidentalis, monoterpene, insect behavior

INTRODUCTION

In plant-virus-insect interactions, plants have evolved a complicated defense system against
herbivores and viruses, such as the defense of secondary metabolites. For instance, plants emit
repellent terpenoids as soon as herbivores damage plants (Dahlin et al., 2015; Magalhaes et al.,
2018). In addition, when plants are attacked by herbivores and viruses, the plant hormone jasmonic
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acid (JA) is rapidly synthesized, to activate the expression of
defense compounds such as alkaloids and terpenoids, which
directly and indirectly increase plant resistance (De Geyter et al.,
2012; Okada et al., 2015; Rondoni et al., 2018). Correspondingly,
insect-vector transmitted viruses overcome this system by
increasing the capability of their insect vectors to promote virus
spread (Luan et al., 2014; Shi et al., 2014, 2018; Yan and Xie,
2015). Some plant viruses can induce the synthesis of terpenoids
to change the preference of insect vectors (Eigenbrode et al., 2002;
Mann et al., 2012; Chen et al., 2017; Shi et al., 2017). Plant viruses
have also evolved effective mechanisms to interfere with the JA-
mediated defense response by targeting key proteins to inhibit the
JA signaling pathway (De Geyter et al., 2012; Attaran et al., 2014;
Cole et al., 2014; Gimenez-Ibanez et al., 2014).

Tomato spotted wilt orthotospovirus (TSWV) is a notorious
virus in agriculture worldwide, which has a wide range of host
plants, such as pepper, tomato, eggplant, broad bean, and lettuce
(Turina et al., 2016). Arabidopsis is also the host plant for
TSWV (Abe et al., 2011). TSWV is transmitted by thrips in a
persistent propagative manner (Wan et al., 2020), of which the
Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)
is the main species (Rotenberg et al., 2015; Cao et al., 2018). To
resist virus infection, plants often exploit RNA silencing in their
defense system, while plant viruses encode many RNA silencing
suppressors as a corresponding countermeasure. The NSs protein
of TSWV is an RNA silencing suppressor which plays many roles
in the TSWV infection, replication, and transmission process
(Rotenberg et al., 2015). For example, NSs protein suppressed
post-transcriptional gene silencing in plants and interfered with
RNA silencing in arthropod cell lines (Takeda et al., 2002;
Garcia et al., 2006). In addition, NSs protein has been proven
to be necessary in virus accumulation in viruliferous thrips
(Margaria et al., 2014).

Recent evidence has shown that the silencing suppressor of
plant viruses is involved in JA expression and plant volatile
manipulation to promote insect vector survival and viral
transmission (Yan and Xie, 2015). For example, 2b protein,
the silencing suppressor of cucumber mosaic virus (CMV),
was identified to prevent JA-induced degradation of JAZ1, and
therefore enhanced odor-dependent attraction of the aphid
vector (Wu et al., 2017). Similarly, βC1 protein, the RNA silencing
suppressor of tomato yellow leaf curl China virus (TYLCCNV),
which interacts with the JA-related transcription factor MYC2
and suppresses the JA-regulated synthesis of terpenoids, results in
the promotion of virus transmission by the insect vector whitefly,
Bemisia tabaci (Salvaudon et al., 2013). Up to now, whether
there is a role in TSWV silencing suppressors in reducing plant
defenses and promoting the preference and feeding behavior of
F. occidentalis remains unknown.

To investigate the interaction between NSs protein, the
silencing suppressor of TSWV, plants, and F. occidentalis, we
(1) produced transgenic Arabidopsis expressing exogenous NSs
genes; (2) compared the host preference and feeding behavior
of F. occidentalis with wild-type Arabidopsis and transgenic
Arabidopsis expressing NSs; (3) profiled plant volatiles using GC-
MS and functionally characterized specific volatile compounds
using a Y-tube olfactometer; (4) investigated endogenous

hormones of plants; and (5) analyzed differentially expressed
genes involved in terpenoid biosynthesis and plant-pathogen
interaction using RNA-seq.

RESULTS

Preference and Feeding Behavior of
F. occidentalis
A two-choice test was conducted with a Y-tube to investigate
the preference of F. occidentalis on NSs transgenic plants and
wild-type plants. The results showed that approximately 64% of
F. occidentalis preferred the NSs transgenic plants, whereas 36%
of F. occidentalis preferred wild-type Arabidopsis (Student’s t-test,
T =−2.45, df = 16, P < 0.01) (Figure 1). F. occidentalis preferred
the transgenic plants expressing NSs over wild-type Arabidopsis.

An electrical penetration graph (EPG) was used to explore
the feeding behavior of F. occidentalis. As the results showed,
the number of total ingestion probes (TI), non-ingestion probes
(NI), short-ingestion probes (SI), and long-ingestion probes (LI)
was 2.76, 2.74, 2.90, and 1.93 times greater, respectively, for
F. occidentalis on NSs plants than on WT plants (TI: Student’s
t-test, T =−2.86, df = 78, P< 0.01; NI: Student’s t-test, T =−2.68,
df = 78, P = 0.01; SI: Student’s t-test, T =−2.73, df = 78, P = 0.01;
LI: Student’s t-test, T = −2.14, df = 78, P = 0.04; Figure 2A). The
duration of the total ingestion probes (TI), non-ingestion probes
(NI), short-ingestion probes (SI), and long-ingestion probes (LI)
was 1.80, 2.94, 1.95, and 1.09 times greater, respectively, for
F. occidentalis on NSs plants than on WT plants (TI: Student’s
t-test, T =−3.53, df = 78, P< 0.01; NI: Student’s t-test, T =−4.72,
df = 78, P < 0.01; SI: Student’s t-test, T =−2.28, df = 78, P = 0.03;
LI: Student’s t-test, T = −0.38, df = 78, P = 0.71; Figure 2B).
F. occidentalis preferred to feed on NSs plants than on wild-type
plants, which means that the silencing suppressor NSs attracts
F. occidentals to the plants.

FIGURE 1 | Preference of F. occidentalis in Y-tube olfactometer bioassay. WT,
wild-type control plants; NSs, Transgenic plants expressing NSs gene. Data
are shown as percentages, and * indicate a significant difference between two
bars (n = 9, Student’s t-test, P < 0.05).

Frontiers in Microbiology | www.frontiersin.org 2 December 2020 | Volume 11 | Article 590451

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-590451 December 4, 2020 Time: 18:52 # 3

Du et al. NSs Alters Preference of Frankliniella occidentalis

FIGURE 2 | Feeding behavior of F. occidentalis. Number and duration were
recorded from each of two 1 h period for each individual thrip. (A) Number of
F. occidentalis probes on NSs plants and WT plants; (B) Duration of
F. occidentalis probes on NSs plants and WT plants. WT, wild-type control
plants; NSs, transgenic plants expressing NSs gene. TI, total ingestion
probes; NI, non-ingestion probes; SI, short-ingestion probes; LI,
long-ingestion probes. Different lowercase letters (a, b) indicate significant
differences between two bars (n = 40, Student’s t-test, P < 0.05).

Extraction and Functional Analysis of
Plant Volatiles
The volatiles were measured in the headspace of NSs transgenic
plants and wild-type plants. Three terpene volatiles including (E)-
β-ocimene, γ-terpinene, and β-phellandrene were detected, and
they were all found to be monoterpene. Compared with wild-
type Arabidopsis, the levels of the three monoterpene volatiles in
the transgenic plants expressing NSs were significantly reduced
(Student’s t-test, T = 3.56, df = 4, P < 0.05 for (E)-β-ocimene;
T = 3.37, df = 4, P < 0.05 for γ-terpinene; T = 4.56, df = 4,
P < 0.05 for β-phellandrene) (Figure 3). The results indicate that
the silencing suppressor NSs attracts F. occidentals by suppressing
host terpenoids.

F. occidentalis Preference Tests With
Volatiles From Arabidopsis
To confirm whether (E)-β-ocimene, γ-terpinene, and
β-phellandrene had a repellent effect on F. occidentalis,
Y-tube olfactory-choice tests of F. occidentalis between
volatiles and purified air were performed. The number of

F. occidentalis was significantly higher on the arm of purified
air compared with the arm with (E)-β-ocimene, γ-terpinene,
and β-phellandrene. Among them, γ-terpinene showed the
most obvious repelling effect (Student’s t-test, T = −3.76,
df = 16, P < 0.01 for (E)-β-ocimene; T = −4.75, df = 16,
P < 0.01 for γ-terpinene; T = −3.01, df = 16, P < 0.05 for
β-phellandrene) (Figure 4A).

In each pair of the volatile mixture and control, the
number of F. occidentalis was higher in the Y-tube arm of
purified air control than in the arm of the volatile mixture
(Student’s t-test, T = −6.30, df = 16, P < 0.01 for (E)-
β-ocimene + γ-terpinene; T = −5.06, df = 16, P < 0.01 for
(E)-β-ocimene + β-phellandrene; T = −8.74, df = 16, P < 0.01
for γ-terpinene + β-phellandrene; T = −3.50, df = 16, P < 0.05
for (E)-β-ocimene+ γ-terpinene+ β-phellandrene) (Figure 4B).

Quantification of Plant Endogenous
Hormone
The endogenous hormones were measured in NSs transgenic
plants and wild-type plants. Transgenic plants expressing
NSs had one third JA compared with wild-type Arabidopsis
(Student’s t-test, T = −3.05, df = 4, P < 0.05). However,
there was no significant difference in the level of MeJA
and SA between the wild-type Arabidopsis and transgenic
plants expressing NSs (MeJA: Student’s t-test, T = 0.61,
df = 4, P > 0.05; SA: Student’s t-test, T = 1.05, df = 4,
P > 0.05) (Figure 5). It suggests that NSs interferes
with JA-regulated host terpenoid expression to attract
F. occidentals.

RNA-Seq of Wild-Type and Transgenic
Plants
The RNA-seq was performed to confirm the effect of NSs,
which suppressed host terpenoids to attract F. occidentals. For
RNA-seq, an average of 52 million clean reads were produced
that mapped onto the Arabidopsis genome at an average
rate of 92%, representing an average of 16,289 genes that
were expressed for each sample (Supplementary Table S2).
Compared with wild-type Arabidopsis, 204 differentially
expressed genes (DEGs) were upregulated and 1054 DEGs
were downregulated in transgenic plants expressing NSs
(Figures 6A,B and Supplementary Table S3). KEGG analysis
indicated that a total of 89 KEGG pathways were enriched for
the DEGs (Supplementary Table S4). Most pathways were
involved in the plant-pathogen interaction (ath04626), plant
hormone signal transduction (ath04075), terpenoid backbone
biosynthesis (ath00900), and sesquiterpenoid and triterpenoid
biosynthesis (ath00909).

A total of five genes involved in terpenoid biosynthesis
were lower in transgenic plants expressing NSs than in wild-
type Arabidopsis among 1258 DEGs. The five DEGs were
identified as terpenoid biosynthesis encoded squalene synthase
2 (SQS2), FAD/NAD (P)-binding oxidoreductase family
protein (XF1), squalene epoxidase 3 (SQE3), 3-hydroxy-3-
methylglutaryl-CoA reductase 2 (HMG2), and GHMP kinase
family protein (AT3G54250) (Figure 6C). In addition, 10
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FIGURE 3 | Plant volatiles from wild-type Arabidopsis and transgenic plants expressing NSs at the flowering stages. WT, wild-type control plants; NSs, transgenic
plants expressing NSs gene. * indicates a significant difference between two bars (n = 3, Student’s t-test, P < 0.05).

FIGURE 4 | Preference of F. occidentalis for selected plant volatiles, including (E)-β-ocimene, β-phellandrene, γ-terpinene, and a mixture of the three volatiles using a
Y-tube olfactometer. (A) Preference of F. occidentalis for respective plant volatiles; (B) Preference of F. occidentalis for plant volatile mixtures. Standards of volatiles
were used in the assay. Volatiles, (E)-β-ocimene or β-phellandrene or γ-terpinene; CK, purified air control; Volatile mixtures, mixture of (E)-β-ocimene, β-phellandrene,
γ-terpinene. Different lowercase letters (a, b) indicate a significant difference between two bars (n = 9, Student’s t-test, P < 0.05).

DEGs involved in the plant-pathogen interaction were also
identified, including cyclic nucleotide gated channel 9 (CNGC9),
calcium-binding EF hand family protein (TCH3), calmodulin
9 (CAM9), calmodulin 2 (CAM2), calmodulin 8 (CAM8),
MAP kinase/ERK kinase 1 (MEK1), pathogenesis-related
protein 1 (PR1), phosphatase-like protein (SGT1A), heat

shock protein 81-2 (HSP81-2), and heat shock protein 81-3
(HSP81-3) (Figure 6C).

Validation of RNA-Seq Data by qRT-PCR
The qRT-PCR was conducted to validate RNA-seq data.
As expected, compared with wild-type Arabidopsis, all nine
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FIGURE 5 | The JA, MeJA, and SA content in wild-type Arabidopsis and
transgenic Arabidopsis expressing NSs at the flowering stages. * indicates a
significant difference between two bars (n = 3, Student’s t-test, P < 0.05).

genes were downregulated in transgenic plants expressing NSs
(Figure 7A). To further validate the correlation of RNA-seq data
and qRT-PCR data, the r-squared value of Pearson’s correlation
test was used. Compared with RNA-seq results, all nine genes
(genes in NSs transgenic plants compared to wild-type plants)
showed downregulated expressions in the qRT-PCR results
(0 < r < 1), which confirmed the reliability of RNA-seq data
(Figure 7B). The results of RNA-seq and qRT-PCR confirmed
that NSs interferes with JA-regulated host terpenoid expression
to attract F. occidentals.

DISCUSSION

During the co-evolution of plant viruses with insect vectors,
plant viruses influenced the performance of their vectors
by manipulating plant volatile release. Although the specific
molecular mechanism by which viruses interfere with the
expression of host volatiles is not clear, some effectors have been
found to be associated with them (Ziebell et al., 2011; Salvaudon
et al., 2013; Casteel et al., 2014). Most effectors belong to silencing
suppressors but the function of manipulation is independent of
its silencing inhibition activity (Wu et al., 2017). In this study, we
reported that NSs, the silencing suppressor of TSWV, reduced the
expression of JA and led to a decrease in monoterpene volatile
formation, thereby indirectly attracting F. occidentalis to plants.
In addition, we found that feeding male thrips on NSs plants
resulted in an almost threefold increase in the number of total
ingestion, non-ingestion, and short-ingestion than on WT plants.
Previous research showed that infected males made three times
more total probes than uninfected males (Stafford et al., 2011).
We found that even without a TSWV infection in the body of
the thrip, only an infection of the NSs transgenic plants could
induce the feeding behavior of thrips, and NSs may be the key
factor of TSWV to induce thrip feeding. The NSs protein of
TSWV is an RNA silencing suppressor which plays a key role
in TSWV infection (Wu et al., 2019), and here we found a new
role for NSs protein in helping the TSWV manipulate the feeding
behavior of thrips.

Terpenoids emitted from plants, which are airborne signals
for plant defense can repel herbivores (Kendra et al., 2016).
Terpenoids are induced when plants are attacked by herbivores
in response to herbivore damage and work to repel herbivores
(Keeling and Bohlmann, 2006; Heiling et al., 2010). The content
of (E)-β-ocimene increased in the volatiles of Arabidopsis infested
with Pieris rapae (Faldt et al., 2003). Headspace volatiles from
lima beans infested with spider mites often contain many
terpenoids, such as (E)-β-ocimene, 4,8-dimethyl-1,3(E), and 7-
non-atriene (Bouwmeester et al., 1999). In addition, γ-terpinene
has the acaricidal activity against adult Hyalomma marginatum
(Cetin et al., 2010). In our research, three monoterpene volatiles
were detected: (E)-β-ocimene, β-phellandene, and γ-terpinene,
and emissions of these three monoterpene volatiles in the
transgenic plants expressing NSs were lower than those of wild-
type Arabidopsis (Figure 3). Moreover, the Y-tube olfactometer
assay showed that F. occidentalis was repelled by these three
volatiles individually, and the volatile mixtures indicated that
plant volatiles act as a repellent to reduce F. occidentalis numbers
on plants and then reduce damage to Arabidopsis (Figure 4).
These results indicated that the preference of F. occidentalis for
transgenic plants expressing NSs was due to the inhibition of
monoterpene volatile emissions by NSs. In this research, the
terpenoid volatiles detected were different from Wu et al. (2019),
as different host plants (Arabidopsis and pepper) were used in
the two studies. The volatiles detected were all monoterpenes.
It is possible that in different host plants, NSs may reduce the
monoterpene synthesis through different volatile pathways to
induce the feeding behavior and preference of F. occidentalis. Our
results indicated that a viral silencing suppressor, such as NSs,
plays an important role in inhibiting the synthesis of many kinds
of monoterpenes in different host plants.

In addition, RNA-seq and qRT-PCR showed that the reduction
of terpenoids was due to the inhibition of the gene expression
of terpenoid synthesis pathways by NSs (Figures 6C, 7). The
expression of five genes (HMG2, AT3G54250, SQS2, SQE3,
and XF1) in the terpenoid synthesis pathway was inhibited.
Among them, the enzyme 3-hydroxy-3-methylglutaryl coenzyme
A reductase (HMGR), which contains two functionally active
HMGR isoforms (HMG1, HMG2), was reported to catalyze
the main rate-limiting step in terpenoid biosynthetic pathways
(Caelles et al., 1989; Enjuto et al., 1994). For example, the levels of
triterpenes were reduced by 65 and 25% in HMG1 and HMG2
mutants, compared to those in wild-type plants, respectively
(Ohyama et al., 2007). Moreover, the expression level of sterol
in transgenic Arabidopsis overexpressing HMGR was increased
(Manzano et al., 2004).

Jasmonic acid is the master switch in plant defense
systems against herbivores and viruses, activating gene
expression associated with terpenoid volatiles synthesis
(Okada et al., 2015). For example, caterpillars (Spodoptera
littoralis) feeding on lima beans increases the expression of
JA and induces the synthesis and emission of terpenoids
such as (E)-β-ocimene (Arimura et al., 2008). Conversely,
after tomato mutant plants (def-1), which are deficient in
JA biosynthesis, were attacked by phytophagous mites, the
production of terpenoids did not increase as in wild tomatoes
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FIGURE 6 | Gene expression profiling by RNA-seq. (A) Volcano plot for differentially expressed genes between NSs and WT; (B) Cluster analysis of differentially
expressed genes; (C) Cluster analysis of terpenoid biosynthesis-related genes and plant-pathogen interaction-related genes using RNA-seq data. Total RNA was
extracted from transgenic Arabidopsis expressing NSs and wild-type Arabidopsis and sequenced using the Illumina HiSeq platform. DEGs were defined according
to FDR < 0.05. NSs, transgenic plants expressing NSs gene; WT, wild-type plants.

(Ament et al., 2004). Moreover, JA and SA have an obvious
antagonistic relationship in terpenoid biosynthesis, when
Arabidopsis is infested with aphids (Girling et al., 2008). SA

interferes with JA’s positive regulation of terpenoids synthesis.
However, in our study, NSs reduced the expression of JA
in plants but had no effect on SA (Figure 5). These results
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FIGURE 7 | Validation analysis of RNA-seq data by qRT-PCR. (A) Quantitative RT-PCR analysis of five selected terpenoid biosynthesis-related and four selected
plant-pathogen interaction-related genes. * indicates a significant difference between two bars (n = 3, Student’s t-test, *P < 0.05); (B) The correlation analysis of five
selected terpenoid biosynthesis-related and four selected plant-pathogen interaction-related genes between RNA-seq data and qRT-PCR data (Pearson’s
correlation test, 0 < r < 1).

suggest that the synthesis of terpenoids may be regulated by JA
signaling pathways.

In conclusion, our study shows that the silencing suppressor
NSs of TSWV reduces the emission of plant monoterpene
volatiles, to increase the attraction of plants to F. occidentalis, by
interfering with JA-regulated plant defense systems and reducing
the resistant volatiles. Insect vectors are extremely important for
the epidemic of their transmitted viruses, since the spread of
viruses between plants requires the transport of insect vectors.
These viruses commonly change the physiology of plants to
increase the attractiveness and adaptability of plants to insect
vectors (Beanland et al., 2000; Lacroix et al., 2005; Jiu et al.,
2007; Wang et al., 2012; Luan et al., 2014). The phenomenon
that viruses alter plant volatiles to increase the attraction of

plants to insect vectors is also found in other plant-virus-insect
interactions (Eigenbrode et al., 2002; Mann et al., 2012; Chen
et al., 2017). Combining these results, we speculate that “odor
manipulation” is a common strategy for plant viruses to indirectly
promote their own transmission.

MATERIALS AND METHODS

Thrip Strain and TSWV Inoculation
TSWV was obtained in Kunming, Yunnan Province of China
from tomato plants in 2018. Then TSWV was purified, identified,
designated as TSWV-YN, and mechanically inoculated on
Nicotiana tabacum cv. Samsun NN. The mechanical inoculation
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of TSWV involved an inoculum consisting of infected leaf sap
in 0.1 M phosphate buffer, 0.2% sodium sulfite and 0.01 M
mercaptoethanol, and 1% each of celite 545 and carborundum
320 grit. Cotton swabs were used to draw inoculum and
gently rub the fresh leaves of the plant (Mandal et al., 2008;
Shalileh et al., 2016). The symptoms were observed after
7–14 days, and the reverse transcription polymerase chain
reaction (RT-PCR) method was used to detect whether the
plant was successfully infected with the TSWV. The specific
primers were NSs-F: ATGTCTTCAAGTGTTTATGAGT and
NSs-R: TTATTTTGATCCTGAAGCATATG. To maintain the
TSWV strain, some of the TSWV isolates were flash frozen
with liquid nitrogen and then placed in a refrigerator at −80◦C.
The other TSWV isolates were maintained on N. tabacum
plants by thrip transmission to avoid the viral mutants and the
reduced transmissibility.

An isolate of F. occidentalis was obtained from Dr. Qing-jun
Wu of the Chinese Academy of Agricultural Sciences (Beijing,
China). Virus-free stock colonies of F. occidentalis were reared
on bean pods (Phaseolus vulgarisin) in glass jars, closed on top
with a 64 µm thrip-proof nylon net in a greenhouse at 25± 1◦C,
60± 10% RH, and a 14 L: 10 D photoperiod. The bean pods were
replaced daily, and the harvested pods with eggs were transferred
to new glass jars to synchronize larvae growth. F. occidentalis
used in all the experiments were from synchronized rearing
(Mandal et al., 2008).

Wild-type Col-0 Arabidopsis was also obtained from
the Chinese Academy of Agricultural Sciences (Beijing,
China). Wild-type and transgenic Arabidopsis were grown in a
greenhouse at a temperature of 22 ± 1◦C, relative humidity of
55± 10%, and a photoperiod of 14 h.

Construction of Plasmids and
Generation of Transgenic Plants
To obtain the NSs ORF, total RNA was extracted from
100 mg of TSWV-infected N. benthamiana leaves using Trizol
(Invitrogen, United States). The NSs cDNA was obtained by
RT-PCR with specific primers using a HiScript II 1st Strand
cDNA Synthesis Kit (Vazyme, China). The full length coding
sequence of NSs was amplified using pCB-NSs-F (XbaI) and
pCB-NSs-R (PstI) and inserted between the XbaI and PstI
sites of the pCambia1301 vector under the control of the
cauliflower mosaic virus (CaMV) 35S promoter to generate
pCambia1301-NSs. The obtained expression vector was verified
by PCR and sequencing. pCambia1301-NSs was transferred
into Agrobacterium tumefaciens GV3101 by electroporation, and
then transferred into Col-0 plants by the floral dip method
(Clough and Bent, 2010). Successfully transformed T1 plants
were obtained on MS medium containing 50 µg/mL hygromycin
B and confirmed by RT-PCR (Supplementary Figure S1A).
Therefore, the T3 transgene-homozygote lineages generated from
T1 plants through continuous self-pollination (selfing), and RT-
PCR identification were used for the experiments. Western
blot analysis was used to check for protein expression in the
transgenic plants. Total protein of Arabidopsis thaliana was
extracted using a Plant Protein Extraction Kit (Solarbio, China).

Then, the protein was resolved by SDS-PAGE and transferred to a
PVDF Membrane (BIO-RAD, United States). The membrane was
blocked with TBS-T containing 5% skimmed milk, and incubated
with the polyclonal antibody of TSWV NSs protein. Detection
was performed incubating with the horseradish peroxidase-
conjugated goat anti-rabbit IgG antibody (Thermo Fisher
Scientific, United States) and the PierceTM ECL Plus Western
Blotting Substrate (Thermo Fisher Scientific, United States)
(Supplementary Figure S1B). Wild-type Arabidopsis was used as
a negative control. Tubulin was used as a loading control.

Preference and Feeding Behavior of
F. occidentalis
According to previous references, the volatile components are
mainly released from flowers (Aharoni et al., 2003). To investigate
the preference of F. occidentalis on wild-type Arabidopsis and
transgenic plants expressing NSs, plants at the flowering stages
were used for pair-wise comparison using the Y-tube. In each
preference test, five wild-type plants and five transgenic plants
expressing NSs were placed into two odor source bottles, which
were connected to the two arms of the Y-tube (stem 10 cm; arms
20 cm, 60◦ angle; inner diameter 2 cm). Under the action of the
gas generator pump, two streams of purified airflow were metered
into the arms of the Y-tube at 100 mL/min−1.

F. occidentalis adults were used in the preference test for
approximately 5 days. Thrips were starved for 8 h and were
individually introduced at the end of the Y-tube stem. In each test
there were 50 thrips, and each thrip was observed for a maximum
of 5 min. A “choice” was recorded when a thrip entered one arm
for more than 3 cm and a “no choice” was recorded when they
remained inactive for 5 min. In each test, the preference of 50
thrips was counted and the number at each arm was recorded.
In total, there were nine replicate tests, and there was a total of
450 thrips used in this research. The position of two odor-source
bottles was changed to eliminate the effect of potential asymmetry
(Cao et al., 2019). The Y-tube was replaced every 10 thrip tests,
and in each preference test, the Y-tube was replaced 5 times. The
used Y-tube was then washed with 75% ethanol and placed in a
65◦C oven to dry.

The feeding behavior of F. occidentalis on wild-type
Arabidopsis and transgenic plants expressing NSs was compared
by electrical penetration graphs using a DC-system (a Giga-8 DC-
amplifier with a 109 –� input resistance, Wageningen University,
Netherlands) (Liu et al., 2013). There were two treatments, with
each of 20 replicate plants in five to six-leaf stages. The 5 d-old
male thrips were cooled on a glass dish on an ice-pack before
recording. After that, a 15 µm diameter, 2 cm long gold wire
was attached to the thorax of a thrip with a drop of water-soluble
silver glue. Each wired thrip was connected to the Giga-8 probe
input and then placed on the surface of the back of upper leaf of a
plant. The thrip feeding behavior was analyzed with a DI710-UL
analog-to-digital converter (Dataq Instruments, Akron, OH) and
the output was acquired and stored with the PROBE3.4 software
(Wageningen University, Netherlands). EPGs were observed and
recorded continuously for 8 h with each thrip. Waveforms
of EPG were identified according to a previous publication
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(Stafford et al., 2011). Each 8 h observation period was divided
into two 4 h halves, and a 1 h period from each half was randomly
selected for analysis. For each selected 1 h period, the single and
total number and duration of non-ingestion, short-ingestion, and
long-ingestion probes were measured.

Extraction and Analysis of Plant Volatiles
Volatiles emitted by Arabidopsis at the flowering stages were
collected using a dynamic headspace collection system. The soil
with the roots of each plant was carefully wrapped in aluminum
foil, and five plants were placed in 4 L glass jars with gas inlets and
outlets. One stream of purified airflow was metered into a glass
jar at 300 mL/min−1 from the inlet, and a glass tube filled with
300 mg of PoraPak Q 80/100 mesh (Waters, United States) was
used to trap plant volatiles at the outlet. Volatiles were eluted with
800 µL n-hexane (Sigma Aldrich, United States) that contained
160 ng of n-dodecane as an internal standard after 8 h collection
under continuous light. Then a 1 µL sample of the solution
was subjected to GC/MS analysis. The whole experiment was
repeated three times.

GC analysis was performed using a DB-1
(Agilent Technologies, United States) column (30
m × 0.25 mm × 0.25 µm). The temperature profile was
as follows: 60◦C for 2 min; then increased to 130◦C at a
programmed rate of 5◦C/min−1 and kept for 2 min, followed
by a rate of 5◦C/min−1 to 180◦C, then followed by rate of
20◦C/min−1 to 250◦C and kept for 5 min. MS conditions were as
follows: the temperature of the ion source was 200◦C; the scan
mass range was 40–500 U. Then the compounds were identified
by comparison of GC retention times with those of authentic
standards and by comparison of mass spectra with spectra of the
National Institute of Standards and Technology (NIST) database.
The peak area of the volatile expressed as a proportion of the
peak area of the internal standard was used for quantification.

F. occidentalis Preference Tests With
Volatiles From Arabidopsis
Based on the GC/MS analysis results, the preference of
male F. occidentalis to plant volatiles was tested in a Y-tube
olfactometer using the standard chemical of detected volatiles
(Sigma Aldrich, United States). In the Y-tube olfactometer
bioassay, two glass containers, one of the standard chemical
and one of purified air as control, were connected into
the olfactometer arms (Shi et al., 2018). The preference of
F. occidentalis was observed as described in “Preference and
feeding behavior of F. occidentalis.”

Quantification of Plant Endogenous
Hormone
Transgenic plants and wild plants of Arabidopsis at the flowering
stages were used for quantification of the plant endogenous
hormone with 1 g/plant. Leaves of Arabidopsis were ground with
10 mL isopropanol/hydrochloric acid and shaken at 4◦C for
30 min (You et al., 2016). There were 9 transgenic plants and 9
wild plants. Subsequently, 20 mL dichloromethane was added.
The mixture was shaken at 4◦C for 30 min and centrifuged at

13,000 rpm at 4◦C for 5 min. The organic fraction was separated
and then dried under nitrogen in darkness. The solid residue
was re-suspended in 400 µL methanol/0.1% methanoic acid.
The sample was filtered with a 0.22 µm filter membrane before
HPLC-MS/MS analysis.

HPLC analysis was performed using a poroshell 120 SB-C18
(Agilent, United States) column (150 × 2.1 mm × 2.7 µm). The
mobile phase A solvents consisted of methanol+ 0.1% methanoic
acid and the mobile phase B solvents consisted of ultrapure
water + 0.1% methanoic acid. The injection volume was 2 µL.
MS conditions were as follows: the spray voltage was 4,500 V; the
pressure of the air curtain, nebulizer, and aux gas were 15, 65, and
70 psi, respectively, and the atomizing temperature was 400◦C.

RNA-Seq of Wild-Type and Transgenic
Plants
Total RNA was extracted from wild-type Arabidopsis and
transgenic plants (above-ground parts) expressing NSs using
Trizol (Invitrogen, United States), respectively. There were
three biological replicates of NSs plants and three biological
replicates of control wild-type plants. Sequencing libraries were
constructed using the NEBNext

R©

UltraTM RNA Library Prep
Kit for Illumina

R©

(NEB, United States) and sequenced using the
Illumina HiSeq platform. To obtain clean reads, sequencing data
of the raw reads were firstly processed through in-house perl
scripts. Clean reads were obtained by removing reads containing
adapter, reads containing ploy-N, and low quality reads from raw
data. At the same time, Q20, Q30, and GC content clean data were
calculated. All the downstream analyses were based on the clean
data with high quality.

The paired-end clean reads were mapped to the reference
genome downloaded from theArabidopsis information resource1.
To quantify the gene expression level, the mapped clean reads
were calculated and then normalized into transcripts per million
(TPM) (Patro et al., 2017). Genes with a false discovery rate
(FDR < 0.05) were assigned as differentially expressed using
the DESeq R package (1.18.0). Gene ontology (GO) enrichment
analysis of differentially expressed genes was implemented by the
GOseq R package, GO terms with an FDR less than 0.05 were
considered significantly enriched by differential expressed genes.
With a cut-off of 0 < FDR < 1, the statistical enrichment of
differential expression genes was tested by the KOBAS software in
Kyoto Encyclopedia of Genes and Genomics (KEGG) pathways2.

Validation of RNA-Seq Data by qRT-PCR
To validate the results from RNA-seq data, we selected
nine genes from the terpenoid biosynthesis-related
genes and plant-pathogen interaction genes for qRT-
PCR analysis. First-strand cDNA was synthesized from
RNA using the HiScript

R©

II 1st Strand cDNA Synthesis
Kit (Vazyme, China). The specific primers for qRT-PCR
were designed using qPrimerDB (Lu et al., 2018)3 and
two reference genes, β-TUBULIN-2 and ACTIN1 were

1https://www.arabidopsis.org
2http://www.genome.jp/kegg/
3https://biodb.swu.edu.cn/qprimerdb
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used as controls for constant transcript level expression (Wang
et al., 2009; Ramadoss et al., 2018). The stable expression
of β-TUBULIN-2 and ACTIN1 were determined under our
experimental conditions. A total of 0.5 µl 10 µM primers
were used in the 20 µl qRT-PCR reaction system, the primer
sequences are listed in Supplementary Table S1. In addition,
qRT-PCR was performed using the AceQ qRT-PCR SYBR-Green
Master Mix (Vazyme, China) and was analyzed using the 2−11Ct

analysis method (Livak and Schmittgen, 2001). In total, there
were three biological replicates and three technical replicates per
treatment in this test.

The r-squared value of Pearson’s correlation test was used
to validate the correlation of RNA-seq data and qRT-PCR data.
When the r-squared value is 0 < R < 1, it means there is a positive
correlation between RNA-seq data and qRT-PCR data.

Data Analysis
All proportional data were arcsine-square root transformed
before analyses. Student’s t-test for independent samples
was used to compare the preference of F. occidentalis,
the feeding behavior of F. occidentalis, the volatile,
plant hormone, and qRT-PCR performed on wild-type
Arabidopsis and transgenic plants expressing NSs. Student’s
t-test for independent samples was also used to compare
F. occidentalis preference to volatiles and volatile mixtures
from Arabidopsis. Pearson’s correlation test was used to
validate the correlation of RNA-seq data and qRT-PCR data.
SPSS 22.0 (SPSS Software, United States) was used for all
statistical analyses.
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