52 research outputs found

    Homozygous Frameshift Mutation in TMCO1 Causes A Syndrome with Craniofacial Dysmorphism, Skeletal Anomalies, and Mental Retardation

    Get PDF
    We identified an autosomal recessive condition in 11 individuals in the Old Order Amish of northeastern Ohio. The syndrome was characterized by distinctive craniofacial dysmorphism, skeletal anomalies, and mental retardation. The typical craniofacial dysmorphism included brachycephaly, highly arched bushy eyebrows, synophrys, long eyelashes, low-set ears, microdontism of primary teeth, and generalized gingival hyperplasia, whereas Sprengel deformity of scapula, fusion of spine, rib abnormities, pectus excavatum, and pes planus represented skeletal anomalies. The genome-wide homozygosity mapping using six affected individuals localized the disease gene to a 3.3-Mb region on chromosome 1q23.3-q24.1. Candidate gene sequencing identified a homozygous frameshift mutation, c.139_140delAG, in the transmembrane and coiled-coil domains 1 (TMCO1) gene, as the pathogenic change in all affected members of the extended pedigree. This mutation is predicted to result in a severely truncated protein (p.Ser47Ter) of only one-fourth the original length. The TMCO1 gene product is a member of DUF841 superfamily of several eukaryotic proteins with unknown function. The gene has highly conserved amino acid sequence and is universally expressed in all human tissues examined. The high degree of conservation and the ubiquitous expression pattern in human adult and fetal tissues suggest a critical role for TMCO1. This report shows a TMCO1 sequence variant being associated with a genetic disorder in human. We propose “TMCO1 defect syndrome” as the name of this condition

    Homozygous Frameshift Mutation in TMCO1 Causes A Syndrome with Craniofacial Dysmorphism, Skeletal Anomalies, and Mental Retardation

    Get PDF
    We identified an autosomal recessive condition in 11 individuals in the Old Order Amish of northeastern Ohio. The syndrome was characterized by distinctive craniofacial dysmorphism, skeletal anomalies, and mental retardation. The typical craniofacial dysmorphism included brachycephaly, highly arched bushy eyebrows, synophrys, long eyelashes, low-set ears, microdontism of primary teeth, and generalized gingival hyperplasia, whereas Sprengel deformity of scapula, fusion of spine, rib abnormities, pectus excavatum, and pes planus represented skeletal anomalies. The genome-wide homozygosity mapping using six affected individuals localized the disease gene to a 3.3-Mb region on chromosome 1q23.3-q24.1. Candidate gene sequencing identified a homozygous frameshift mutation, c.139_140delAG, in the transmembrane and coiled-coil domains 1 (TMCO1) gene, as the pathogenic change in all affected members of the extended pedigree. This mutation is predicted to result in a severely truncated protein (p.Ser47Ter) of only one-fourth the original length. The TMCO1 gene product is a member of DUF841 superfamily of several eukaryotic proteins with unknown function. The gene has highly conserved amino acid sequence and is universally expressed in all human tissues examined. The high degree of conservation and the ubiquitous expression pattern in human adult and fetal tissues suggest a critical role for TMCO1. This report shows a TMCO1 sequence variant being associated with a genetic disorder in human. We propose “TMCO1 defect syndrome” as the name of this condition

    A New Liquid Chromatography/Tandem Mass Spectrometry Method for Quantification of Gangliosides in Human Plasma

    Get PDF
    Gangliosides are a family of glycosphingolipids characterized by mono- or polysialic acid-containing oligosaccharides linked through 1,3- and 1,4-β glycosidic bonds with subtle differences in structure that are abundantly present in the central nervous systems of many living organisms. Their cellular surface expression and physiological malfunction are believed to be pathologically implicated in considerable neurological disorders, including Alzheimer and Parkinson diseases. Recently, studies have tentatively elucidated that mental retardation or physical stagnation deteriorates as the physiological profile of gangliosides becomes progressively and distinctively abnormal during the development of these typical neurodegenerative syndromes. In this work, a reverse-phase liquid chromatography/tandem mass spectrometry (LC/MS/MS) assay using standard addition calibration for determination of GM2, GM3, GD2, and GD3 in human plasma has been developed and validated. The analytes and internal standard were extracted from human plasma using a simple protein precipitation procedure. Then the samples were analyzed by reverse-phase ultra-performance liquid chromatography (UPLC)/MS/MS interfaced to mass spectrometry with electrospray ionization using a multiple reaction monitoring mode to obtain superior sensitivity and specificity. This assay was validated for extraction recovery, calibration linearity, precision, and accuracy. Our quick and sensitive method can be applied to monitor ganglioside levels in plasma from normal people and neurodegenerative patients

    Trophic effect of bee pollen on small intestine in broiler chickens

    Get PDF
    ABSTRACT In this study, the effects of bee pollen on the development of digestive organs were evaluated in broiler chickens. A total of 144 1-day-old AA broiler chickens were randomly and equally divided into two groups, assigned as the control group and the pollen group, respectively. The control group was fed with a basic diet, while the pollen group was fed with a basic diet supplemented with 1.5% bee pollen over a period of 6 weeks. At the end of each week, the digestive organs were obtained for comparison from 12 broilers randomly selected from each group. The results demonstrated that compared to the control group, the small intestine villi from the duodenum, jejunum, and ileum were longer and thicker in the pollen group. This difference was more significant during early development, especially through the first 2 weeks. Bee pollen increased the length of the villi by 37.1% and 29.4% in the duodenum, 28.1% and 33.7% in the jejunum, and 18.6% and 16.2% in the ileum in week 1 and 2, respectively. Furthermore, the small intestinal glands were developed at a higher density in the pollen group, and the depth of the glands was significantly increased by bee pollen in the first 2 weeks. These findings suggest that bee pollen could promote the early development of the digestive system and therefore is a potentially beneficial food supplement for certain conditions, such as short bowel syndrome. KEY WORDS: • bee pollen • duodenum • ileum • jejunum • small intestine gland • small intestine vill

    Carbon nanoparticles as a multimodal thermoacoustic and photoacoustic contrast agent

    Get PDF
    We demonstrated the potential of carbon nanoparticles (CNPs) as exogenous contrast agents for both thermoacoustic (TA) tomography (TAT) and photoacoustic (PA) tomography (PAT). In comparison to deionized water, the CNPs provided a four times stronger signal in TAT at 3 GHz. In comparison to blood, The CNPs provided a much stronger signal in PAT over a broad wavelength range of 450-850 nm. Specifically, the maximum signal enhancement in PAT was 9.4 times stronger in the near-infrared window of 635-670 nm. In vivo blood-vessel PA imaging was performed non-invasively on a mouse femoral area. The images, captured after the tail vein injection of CNPs, show a gradual enhancement of the optical absorption in the vessels by up to 230%. The results indicate that CNPs can be potentially used as contrast agents for TAT and PAT to monitor the intravascular or extravascular pathways in clinical applications

    Carbon nanoparticles as a multimodal thermoacoustic and photoacoustic contrast agent

    Get PDF
    We demonstrated the potential of carbon nanoparticles (CNPs) as exogenous contrast agents for both thermoacoustic (TA) tomography (TAT) and photoacoustic (PA) tomography (PAT). In comparison to deionized water, the CNPs provided a four times stronger signal in TAT at 3 GHz. In comparison to blood, The CNPs provided a much stronger signal in PAT over a broad wavelength range of 450-850 nm. Specifically, the maximum signal enhancement in PAT was 9.4 times stronger in the near-infrared window of 635-670 nm. In vivo blood-vessel PA imaging was performed non-invasively on a mouse femoral area. The images, captured after the tail vein injection of CNPs, show a gradual enhancement of the optical absorption in the vessels by up to 230%. The results indicate that CNPs can be potentially used as contrast agents for TAT and PAT to monitor the intravascular or extravascular pathways in clinical applications

    A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging

    Get PDF
    Imaging sentinel lymph nodes (SLN) could provide us with critical information about the progression of a cancerous disease. Real-time high-resolution intraoperative photoacoustic imaging (PAI) in conjunction with a near-infrared (NIR) probe may offer opportunities for the immediate imaging for direct identification and resection of SLN or collecting tissue samples. In this work a commercially amenable synthetic methodology is revealed for fabricating luminescent carbon nanoparticles with rapid clearance properties. A one-pot “green” technique is pursued, which involved rapid surface passivation of carbon nanoparticles with organic macromolecules (e.g., polysorbate, polyethyleneglycol) in solvent-free conditions. Interestingly, the naked carbon nanoparticles are derived for the first time, from commercial food grade honey. Surface coated particles are markedly smaller (∼7 nm) than previously explored particles (gold, single-walled carbon nanotubes, copper) for SLN imaging. The results indicate an exceptionally rapid signal enhancement (∼2 min) of the SLN. Owing to their strong optical absorption in the NIR region, tiny size and rapid lymphatic transport, this platform offers great potential for faster resection of SLN and may lower complications caused in axillary investigation by mismarking with dyes or low-resolution imaging techniques

    A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging

    Get PDF
    Imaging sentinel lymph nodes (SLN) could provide us with critical information about the progression of a cancerous disease. Real-time high-resolution intraoperative photoacoustic imaging (PAI) in conjunction with a near-infrared (NIR) probe may offer opportunities for the immediate imaging for direct identification and resection of SLN or collecting tissue samples. In this work a commercially amenable synthetic methodology is revealed for fabricating luminescent carbon nanoparticles with rapid clearance properties. A one-pot “green” technique is pursued, which involved rapid surface passivation of carbon nanoparticles with organic macromolecules (e.g., polysorbate, polyethyleneglycol) in solvent-free conditions. Interestingly, the naked carbon nanoparticles are derived for the first time, from commercial food grade honey. Surface coated particles are markedly smaller (∼7 nm) than previously explored particles (gold, single-walled carbon nanotubes, copper) for SLN imaging. The results indicate an exceptionally rapid signal enhancement (∼2 min) of the SLN. Owing to their strong optical absorption in the NIR region, tiny size and rapid lymphatic transport, this platform offers great potential for faster resection of SLN and may lower complications caused in axillary investigation by mismarking with dyes or low-resolution imaging techniques

    Rapid Assembly of Multiple-Exon cDNA Directly from Genomic DNA

    Get PDF
    Backgrouud. Polymerase chain reaction (PCR) is extensively applied in gene cloning. But due to the existence of introns, low copy number of particular genes and high complexity of the eukaryotic genome, it is usually impossible to amplify and clone a gene as a full-length sequence directly from the genome by ordinary PCR based techniques. Cloning of cDNA instead of genomic DNA involves multiple steps: harvest of tissues that express the gene of interest, RNA isolation, cDNA synthesis (reverse transcription), and PCR amplification. To simplify the cloning procedures and avoid the problems caused by ubiquitously distributed durable RNases, we have developed a novel strategy allowing the cloning of any cDNA or open reading frame (ORF) with wild type sequence in any spliced form from a single genomic DNA preparation. Methodology. Our Genomic DNA Splicing technique contains the following steps: first, all exons of the gene are amplified from a genomic DNA preparation, using software-optimized, highly efficient primers residing in flanking introns. Next, the tissue-specific exon sequences are assembled into one full-length sequence by overlapping PCR with deliberately designed primers located at the splicing sites. Finally, software-optimized outmost primers are exploited for efficient amplification of the assembled full-length products. Conclusions. The Genomic DNA Splicing protocol avoids RNA preparation and reverse transcription steps, and the entire assembly process can be finished within hours, Since genamic DNA is more stable than RNA, it may be a more practical cloning strategy for many genes, especially the ones that are very large and difficult to generate a full length cDNA using oligo-dT primed reverse transcription. With this technique, we successfully doned the full-length wild type coding sequence of human polymeric immunoglobulin receptor, which is 2295 bp in length and composed of 10 exons. © 2007 An et al.published_or_final_versio

    Study on the signalling mechanisms of Epstein-barr virus transforming protein LMPI in cell proliferation, transformation and tumorigenesis

    No full text
    published_or_final_versionMicrobiologyDoctoralDoctor of Philosoph
    corecore