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ABSTRACT 

We demonstrated the potential of carbon nanoparticles (CNPs) as exogenous contrast agents for both thermoacoustic 
(TA) tomography (TAT) and photoacoustic (PA) tomography (PAT). In comparison to deionized water, the CNPs 
provided a four times stronger signal in TAT at 3 GHz. In comparison to blood, The CNPs provided a much stronger 
signal in PAT over a broad wavelength range of 450–850 nm. Specifically, the maximum signal enhancement in PAT 
was 9.4 times stronger in the near-infrared window of 635–670 nm. In vivo blood-vessel PA imaging was performed 
non-invasively on a mouse femoral area. The images, captured after the tail vein injection of CNPs, show a gradual 
enhancement of the optical absorption in the vessels by up to 230%. The results indicate that CNPs can be potentially 
used as contrast agents for TAT and PAT to monitor the intravascular or extravascular pathways in clinical applications. 
 
Keywords: Contrast agents; carbon; photoacoustic tomography; thermoacoutic tomography; nanoparticle. 

 

1. INTRODUCTION 

Thermoacoustic (TA) tomography (TAT) and photoacoustic (PA) tomography (PAT) are non-invasive techniques that 
uniquely synergize pure ultrasound and pure radio frequency (rf) and optical imaging, allowing both satisfactory spatial 
resolution and high soft-tissue contrast.1-2 The technique is based on the detection of acoustic waves from an object that 
absorbs pulsed or intensity-modulated electromagnetic energy (rf band in TAT and laser in PAT). The absorption can be 
associated with endogenous molecules, such as water/ion, hemoglobin, and melanin. For instance, due to the high 
concentration of hemoglobin (12 to 15 g/dl), blood inherently has a strong optical absorption which allows the 
visualization of blood vessels. However, the absorption of nonvascular tissues (e.g., lymph nodes) or intravascular 
biosignatures (e.g., integrins) is insufficient. Thus, exogenous contrast agents such as optical dyes, gold nanoparticles, 
copper nanoparticles, and carbon nanotubes are needed for TAT/PAT in these cases.3-6 TAT and PAT have been 
developed for different applications in rodent models, such as breast cancer imaging, brain structural and functional 
imaging, blood oxygenation and flow velocity monitoring, and tumor angiogenesis.1,7-8 
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Although a lot of contrast agents are available for TAT and PAT, they have their disadvantages. For example, optical 
dyes easily cause skin staining; gold nanoparticles are high in cost and have complicated chemistries; and the toxicity of 
copper nanoparticles and carbon nanotubes is arguable. Therefore, new contrast agents still deserve exploration. We 
reveal a simple and commercially amenable synthetic methodology for creating optically active carbon nanoparticles 
(CNP). CNPs are derived from commercial food-grade honey. Compare to the previously explored particles (gold, 
copper, carbon nanotube etc.), CNPs are significantly smaller (~8 nm in diameter), enabling rapid clearance properties. 
 
In this study, we explore the rf and optical absorbtion properties of carbon nanoparticles (CNPs) as multimodal contrast 
agents for both TAT and PAT. Then, we further monitor the pharmacokinetics of CNPs in blood vessels in mice in vivo 
using PAT. The results could be greatly beneficial for monitor the intravascular or extravascular pathways using 
TAT/PAT together with other structural imaging modalities. 
 

2. MATERIALS AND METHODS 

2.1 Synthesis of optically active carbon nanoparticles 

Commercial grade honey (Great Value™ Clover Honey 1 wt%; batch composition- fructose: 38%, glucose: 31%, 
maltose: 7.1%, sucrose: 1.3%, higher sugars: 1.5%, water: 17.2%) is suspended with an organic macromolecular 
passivating agent (8wt%; PEG400), purged with argon, and heated in a domestic microwave oven for 30 min. 
Microwave power was set at 1200 W with an output power of 50%. The product was then purified by repeated 
centrifugation in water. 
 
2.2 Thermoacoustic system 

For thermoacoustic excitation, a 3.0-GHz microwave generator with pulse width of 0.6 μs and repetition rate of 10 Hz 
was employed. The pulses were guided toward the target through a horn antenna. The size of the antenna opening was 11 
cm × 7 cm. The fluence is 0.45 mJ/cm2 at the opening of the antenna, which is within the safety standard. The test 
samples were placed in a plastic tank filled with mineral oil for ultrasonic coupling. A 1-MHz spherically focused 
transducer with a bandwidth of 70% (V314, Panametrics, Olympus) was used to receive TA signals. 
 
2.3 Photoacoustic system 

The schematic of the system has been reported before.9 For photoacoustic excitation, three different light sources were 
employed for different spectra range or imaging speed: 1) a tunable OPO laser (450–685 nm, Vibrant (HE) 355 I, 
OPOTEK), pulse width 5 ns, pulse repetition rate 10 Hz; 2) a tunable Ti:sapphire laser (730–850 nm, LT-2211A, LOTIS 
TII) pumped by a Q-switched Nd:YAG (LS-2137/2, LOTIS TII), pulse width <15 ns, pulse repetition rate 10 Hz; and 3) 
a dye laser (CBR-D, Sirah) pumped by a Nd:YLF laser (INNOSLAB, Edgewave), pulse width <7 ns, pulse repetition 
rate up to 5 kHz. The first two sources were used for the measurement of the PA spectrum of CNPs. The third source 
was used for fast PA imaging in vivo. The fluence is < 1 mJ/cm2 on the sample surface. For photoacoustic detection, a 
focused ultrasonic transducer with 50 MHz central frequency (V214-BB-RM, Olympus NDT) was employed. The 
transducer surface was immersed in water for ultrasonic coupling. The optical and ultrasonic foci were configured 
coaxially and confocally. This system could achieve 45 μm lateral resolution, 15 μm axial resolution, and more than 3 
mm penetration depth. 
 
2.4 Animals 

All animal experiments were performed in accordance with protocols approved by the Washington University 
Department of Comparative Medicine and the Animal Studies Committee. Athymic nude mice were obtained from 
Harlan and housed in the animal facility at Washington University. During the experiments, the animals were 
anesthetized by administration of gaseous isoflurane (2%, Butler Inc., Dublin) and aseptically prepared. 
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4. CONCLUSION 

In summary, we have successfully demonstrated the potential of carbon nanoparticles (CNPs) as exogenous contrast 
agents for both thermoacoustic tomography (TAT) and photoacoustic tomography (PAT). The CNPs provided more than 
4 times signal enhancement in TAT at 3 GHz and more than 9.4 times signal enhancement in PAT in the NIR window of 
635–670 nm. The results indicate that CNPs can be potentially used as contras agents for TAT and PAT together with 
other structural imaging modalities to monitor the intravascular or extravascular pathways in clinical applications. 
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