161 research outputs found
Rotational superstructure in van der Waals heterostructure of self-assembled C60 monolayer on the WSe2 surface
Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance.</p
Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys
We transplanted kidneys from α1,3-galactosyltransferase knockout (GalT-KO) pigs into six baboons using two different immunosuppressive regimens, but most of the baboons died from severe acute humoral xenograft rejection. Circulating induced antibodies to non-Gal antigens were markedly elevated at rejection, which mediated strong complement-dependent cytotoxicity against GalT-KO porcine target cells. These data suggest that antibodies to non-Gal antigens will present an additional barrier to transplantation of organs from GalT-KO pigs to humans. © 2005 Nature Publishing Group
Myeloid depletion of SOCS3 enhances LPS‐induced acute lung injury through CCAAT/enhancer binding protein δ pathway
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154512/1/fsb2027008005.pd
Recommended from our members
Protective Role of Rho Guanosine Diphosphate Dissociation Inhibitor, Ly-GDI, in Pulmonary Alveolitis
Growing evidences indicate that Ly-GDI, an inhibitory protein of Rho GTPases, plays an essential role in regulating actin cytoskeletal alteration which is indispensible for the process such as phagocytosis. However, the role of Ly-GDI in inflammation remains largely unknown. In the current study, we found that Ly-GDI expression was significantly decreased in the IgG immune complex-injured lungs. To determine if Ly-GDI might regulate the lung inflammatory response, we constructed adenovirus vectors that could mediate ectopic expression of Ly-GDI (Adeno-Ly-GDI). In vivo mouse lung expression of Ly-GDI resulted in a significant attenuation of IgG immune complex-induced lung injury, which was due to the decreased pulmonary permeability and lung inflammatory cells, especially neutrophil accumulation. Upon IgG immune complex deposition, mice with Ly-GDI over-expression in the lungs produced significant less inflammatory mediators (TNF-α, IL-6, MCP-1, and MIP-1α) in bronchoalveolar lavage fluid when compared control mice receiving airway injection of Adeno-GFP. Mechanically, IgG immune complex-induced NF-κB activity was markedly suppressed by Ly-GDI in both alveolar macrophages and lungs as measured by luciferase assay and electrophoretic mobility shift assay. These findings suggest that Ly-GDI is a critical regulator of inflammatory injury after deposition of IgG immune complexes and that it negatively regulates the lung NF-κB activity
Direct Covalent Chemical Functionalization of Unmodified Two-Dimensional Molybdenum Disulfide
Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) like
molybdenum disulfide (MoS2) are generating significant excitement due to their
unique electronic, chemical, and optical properties. Covalent chemical
functionalization represents a critical tool for tuning the properties of TMDCs
for use in many applications. However, the chemical inertness of semiconducting
TMDCs has thus far hindered the robust chemical functionalization of these
materials. Previous reports have required harsh chemical treatments or
converting TMDCs into metallic phases prior to covalent attachment. Here, we
demonstrate the direct covalent functionalization of the basal planes of
unmodified semiconducting MoS2 using aryl diazonium salts without any
pretreatments. Our approach preserves the semiconducting properties of MoS2,
results in covalent C-S bonds, is applicable to MoS2 derived from a range of
different synthesis methods, and enables a range of different functional groups
to be tethered directly to the MoS2 surface. Using density functional theory
calculations including van der Waals interactions and atomic-scale scanning
probe microscopy studies, we demonstrate a novel reaction mechanism in which
cooperative interactions enable the functionalization to propagate along the
MoS2 basal plane. The flexibility of this covalent chemistry employing the
diverse aryl diazonium salt family is further exploited to tether active
proteins to MoS2, suggesting future biological applications and demonstrating
its use as a versatile and powerful chemical platform for enhancing the utility
of semiconducting TMDCsComment: To appear in Chemistry Materials (In press
Comparative bibliometric analysis of artificial intelligence-assisted polyp diagnosis and AI-assisted digestive endoscopy: trends and growth in AI gastroenterology (2003–2023)
IntroductionArtificial intelligence is already widely utilized in gastroenterology. This study aims to comprehensively evaluate the research hotspots and development trends within the field of AI in gastroenterology by employing bibliometric techniques to scrutinize geographical distribution, authorship, affiliated institutions, keyword usage, references, and other pertinent data contained within relevant publications.MethodsThis investigation compiled all pertinent publications related to artificial intelligence in the context of gastrointestinal polyps and digestive endoscopy from 2003 to 2023 within the Web of Science Core Collection database. Furthermore, the study harnessed the tools CiteSpace, VOSviewer, GraphPad Prism and Scimago Graphica for visual data analysis. The study retrieved a total of 2,394 documents in the field of AI in digestive endoscopy and 628 documents specifically related to AI in digestive tract polyps.ResultsThe United States and China are the primary contributors to research in both fields. Since 2019, studies on AI for digestive tract polyps have constituted approximately 25% of the total AI digestive endoscopy studies annually. Six of the top 10 most-cited studies in AI digestive endoscopy also rank among the top 10 most-cited studies in AI for gastrointestinal polyps. Additionally, the number of studies on AI-assisted polyp segmentation is growing the fastest, with significant increases in AI-assisted polyp diagnosis and real-time systems beginning after 2020.DiscussionThe application of AI in gastroenterology has garnered increasing attention. As theoretical advancements in AI for gastroenterology have progressed, real-time diagnosis and detection of gastrointestinal diseases have become feasible in recent years, highlighting the promising potential of AI in this field
Exfoliation of Quasi-Two-Dimensional Nanosheets of Metal Diborides
Metal diborides are a class of ceramic materials with crystal structures consisting of hexagonal sheets of boron atoms alternating with planes of metal atoms held together with mixed character ionic/covalent bonds. Many of the metal diborides are ultrahigh-temperature ceramics such as HfB2, TaB2, and ZrB2, which have melting points above 3000 °C, high mechanical hardness and strength at high temperatures, and high chemical resistance, while MgB2 is a superconductor with a transition temperature of 39 K. Here, we demonstrate that this diverse family of non-van der Waals (vdW) materials can be processed into stable dispersions of quasi-two-dimensional (2D) nanosheets using ultrasonication-assisted exfoliation. We generate quasi-2D nanosheets of the metal diborides AlB2, CrB2, HfB2, MgB2, NbB2, TaB2, TiB2, and ZrB2 and use electron and scanning probe microscopy techniques to characterize their structures, morphologies, and compositions. The exfoliated layers have a distribution of lateral dimensions from tens of nanometers up to several micrometers and a distribution of thicknesses from as low as 2-3 nm up to tens of nanometers, all while retaining their hexagonal atomic structure and chemical composition. We exploit the convenient solution-phase dispersions of exfoliated CrB2 nanosheets to incorporate them directly into polymer composites. In contrast to the hard and brittle bulk CrB2, we find that CrB2 nanocomposites remain very flexible and simultaneously provide increases in the elastic modulus and the ultimate tensile strength of the polymer. The successful liquid-phase production of quasi-2D metal diborides enables their processing using scalable low-temperature solution-phase methods, extending their use to previously unexplored applications, and reveals a new family of non-vdW materials that can be efficiently exfoliated into quasi-2D forms
A novel nomogram for adult primary perihilar cholangiocarcinoma and considerations concerning lymph node dissection
ObjectiveTo construct a reliable nomogram available online to predict the postoperative survival of patients with perihilar cholangiocarcinoma.MethodsData from 1808 patients diagnosed with perihilar cholangiocarcinoma between 2004 and 2015 were extracted from the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) database. They were randomly divided into training and validation sets. The nomogram was established by machine learning and Cox model. The discriminant ability and prediction accuracy of the nomogram were evaluated by concordance index (C-index), receiver operator characteristic (ROC) curve and calibration curve. Kaplan-Meier curves show the prognostic value of the associated risk factors and classification system.ResultsMachine learning and multivariate Cox risk regression model showed that sex, age, tumor differentiation, primary tumor stage(T), lymph node metastasis(N), TNM stage, surgery, radiation, chemotherapy, lymph node dissection were associated with the prognosis of perihilar cholangiocarcinoma patients relevant factors (P < 0.05). A novel nomogram was established. The calibration plots, C-index and ROC curve for predictions of the 1-, 3-, and 5-year OS were in excellent agreement. In patients with stage T1 and N0 perihilar cholangiocarcinoma, the prognosis of ≥4 lymph nodes dissected was better than that of 1- 3 lymph nodes dissected (P < 0.01).ConclusionThe nomogram prognostic prediction model can provide a reference for evaluating the prognosis and survival rate of patients with perihilar cholangiocarcinoma. Patients with stage T1 and N0 perihilar cholangiocarcinoma have more benefits by increasing the number of lymph node dissection
Vitrification of kidney precursors as a new source for organ transplantation
[EN] Kidney transplantation from deceased or living human donors has been limited by donor availability as opposed to the increasing demand, and by the risk of allograft loss rejection and immunosuppressive therapy toxicity. In recent years, xenotransplantation of developed kidney precursor cells has offered a novel solution for the unlimited supply of human donor organs. Specifically, transplantation of kidney precursors in adult hosts showed that intact embryonic kidneys underwent maturation, exhibiting functional properties, and averted humoural rejection post-transplantation from non-immunosuppressed hosts. Even if supply and demand could be balanced using xenotransplants or lab-grown organs from regenerative medicine, the future of these treatments would still be compromised by the ability to physically distribute the organs to patients in need and to produce these products in a way that allows adequate inventory control and quality assurance. Kidney precursors originating from fifteen-day old rabbit embryos were vitrified using Cryotop® as a device and VM3 as vitrification solution. After 3 months of storage in liquid nitrogen, 18 kidney precursors were transplanted into non-immunosuppressed adult hosts by laparoscopy surgery. Twenty-one days after allotransplantation, 9 new kidneys were recovered. All the new kidneys recovered exhibited significant growth and mature glomeruli. Having achieved these encouraging results, we report, for the first time, that it is possible to create a long-term biobank of kidney precursors as an unlimited source of organs for transplantation, facilitating the inventory control and distribution of organs.This work was supported by funds from the Generalitat Valenciana Research Programme (PrometeoII 2014/036).Marco Jiménez, F.; Garcia-Dominguez, X.; Jiménez Trigos, ME.; Vera Donoso, CD.; Vicente Antón, JS. (2015). Vitrification of kidney precursors as a new source for organ transplantation. Cryobiology. 70(3):278-282. https://doi.org/10.1016/j.cryobiol.2015.04.007S27828270
- …
