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Abstract 

Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) like 

molybdenum disulfide (MoS2) are generating significant excitement due to their unique electronic, 

chemical, and optical properties. Covalent chemical functionalization represents a critical tool for 

tuning the properties of TMDCs for use in many applications. However, the chemical inertness of 

semiconducting TMDCs has thus far hindered the robust chemical functionalization of these 

materials. Previous reports have required harsh chemical treatments or converting TMDCs into 

metallic phases prior to covalent attachment. Here, we demonstrate the direct covalent 

functionalization of the basal planes of unmodified semiconducting MoS2 using aryl diazonium salts 

without any pretreatments. Our approach preserves the semiconducting properties of MoS2, results in 

covalent C-S bonds, is applicable to MoS2 derived from a range of different synthesis methods, and 

enables a range of different functional groups to be tethered directly to the MoS2 surface. Using 

density functional theory calculations including van der Waals interactions and atomic-scale scanning 

probe microscopy studies, we demonstrate a novel reaction mechanism in which cooperative 

interactions enable the functionalization to propagate along the MoS2 basal plane. The flexibility of 

this covalent chemistry employing the diverse aryl diazonium salt family is further exploited to tether 

active proteins to MoS2, suggesting future biological applications and demonstrating its use as a 

versatile and powerful chemical platform for enhancing the utility of semiconducting TMDCs. 

 

Introduction 

Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) have elicited 

considerable research interest in the past few years due to their remarkable properties such as layer number 

dependent band gaps, photoluminescence, electroluminescence, valley polarization, and catalytic activity.1-10 

Semiconducting TMDCs are thus promising materials for electronics and optoelectronics applications.2,3,7,11-

13 For other low-dimensional materials such as carbon nanotubes and graphene, chemical functionalization 

enables crucial modifications of their physical, electronic, optical, and chemical properties,14-22 and is 

essential for engineering how they interact with their external environment for a wide range of applications 

including transistors,2,7,8,12,23 flexible electronics,24 gas sensors,25 and biosensors.26-28 The chemical 

functionalization of TMDCs is thus expected to be similarly important for enhancing their performance in 

electronics and sensing applications.  

Semiconducting TMDCs, however, lack dangling bonds on their basal planes,29 which makes them 

substantially less reactive than the low-dimensional carbon allotropes. As a result, previous methods of 

covalent functionalization of semiconducting TMDCs have resorted to either harsh treatments that abolish 

many of the desirable properties of the TMDCs or aggressive chemicals to promote covalent bond formation. 
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For instance, Voiry et al.30 and Knirsch et al.31 have reported covalent functionalization of MoS2 using 

organoiodides and aryl diazonium salts, respectively, only after conversion from the semiconducting 2H 

phase to the electron-rich metallic 1T phase. Formation of the metallic MoS2 phase in these earlier works 

requires treatment with the highly pyrophoric compound n-butyllithium. Furthermore, the conversion 

disrupts the semiconducting and photoluminescence properties of the pristine 2H phase. Lei et al. employed 

a Lewis acid-base mechanism to form coordination bonds with Se or S atoms on the TMDC surface using 

metal chlorides like TiCl4 and SnCl4.32 TiCl4, however, is highly volatile and reacts explosively with water 

releasing HCl, while SnCl4 can decompose in air and was once employed as a chemical weapon.33 Milder 

chemistries for the TMDCs have been reported, but they have been limited to interactions at defect sites or 

non-covalent bonds. Coordination chemistry using metal acetates34 and ligand conjugation at defect sites in 

semiconducting TMDCs has been demonstrated,35,36 but the maximum degree of surface functionalization is 

inherently limited to the initial concentration of defect sites. Noncovalent functionalization of TMDCs37 has 

been demonstrated using various organic13,23,35,38-40 and inorganic chemical species;41 however, these methods 

rely only on physisorption to the semiconductor surface and are not as robust as covalent chemistries. 

Consequently, there exists an unmet need for mild chemistries that will enable direct covalent 

functionalization of semiconducting TMDC surfaces. Here, we report the direct covalent functionalization of 

the basal plane of unmodified semiconducting MoS2 using mild conditions and aryl diazonium salts, which 

can be used to covalently tether a wide variety of different functional groups to the MoS2 surface. The 

chemical diversity that is available with the diazonium salts combined with their ready formation of covalent 

surface bonds thus establishes a versatile platform for chemical modification of semiconducting TMDCs. 

Our functionalization approach preserves the semiconducting and photoluminescence properties of MoS2 

without conversion to the metallic phase. The earlier reports30,31 on MoS2 functionalization using lithium pre-

treatment to change the phase from semiconducting to metallic have widely spread the notion that this 

modification is a requirement.29,42-44 However, we find that unmodified MoS2 can indeed be covalently 

functionalized. We explore this finding using experiments and first principles calculations, and put forth a 

novel cooperative reaction mechanism that enables covalent functionalization of the highly inert 

semiconducting MoS2 surface: the initial covalent attachment to a single sulfur vacancy enhances the 

reactivity at neighbouring lattice sites and enables the reaction to propagate rapidly across the otherwise 

pristine MoS2 surface.  

The formation of covalent C–S bonds is confirmed by X-ray photoemission spectroscopy (XPS), 

Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Density functional 

theory (DFT) including van der Waals interactions is used to explain the reaction mechanism at the atomistic 

level. Scanning tunneling microscopy (STM) is used to image the MoS2 atomic lattice, while atomic force 

microscopy (AFM) is used to characterize the morphology of molecular attachment as a function of reaction 
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time. Raman and photoluminescence (PL) spectroscopic mapping are used to characterize the optical 

properties of covalently functionalized MoS2, showing that the material remains semiconducting. 

Furthermore, we show that this approach is general by using it to effectively covalently functionalize MoS2 

obtained from three different methods: mechanical exfoliation, chemical vapour deposition, and solution 

phase dispersion. Lastly, we show that our technique can be extended to the covalent tethering of the active 

fluorescent proteins GFP and mCherry to the MoS2 surface, demonstrating the utility of this approach toward 

future biological applications such as drug delivery,45 bioimaging,46 and biosensing.27 This direct covalent 

modification of the MoS2 surface suggests many future opportunities to enhance the properties of TMDCs 

via mild chemistries and provides a versatile chemical platform for tailoring the properties of MoS2 simply 

by functionalizing with different aryl diazonium salts.  

 

Experimental Section 

 

Mechanical exfoliation of MoS2 

SiO2 (300 nm)/Si substrates (Wafernet, Inc.) were ultrasonically cleaned in sequential baths of 

acetone and isopropanol and then blown dry with ultrahigh purity nitrogen gas. MoS2 flakes were prepared 

on the cleaned substrate by mechanical exfoliation from a bulk MoS2 crystal (SPI Supplies) using adhesive 

tape. The samples were then annealed in vacuum at 300°C to remove tape residue. Monolayer, bilayer, and 

few-layer flakes were identified by optical microscopy and Raman spectroscopy. 

 

Diazonium functionalization of MoS2 

MoS2 samples supported on SiO2/Si substrates were immersed in 10 mM aqueous solutions of 4-

nitrobenzenediazonium tetrafluoroborate (4-NBD) (Sigma Aldrich) with constant stirring (125 rpm) at 35°C 

for defined reaction times in a parafilm-sealed container kept in the dark. After each reaction step, the sample 

was gently rinsed with ultrapure water and blown dry with ultrahigh purity nitrogen gas before 

characterization to remove physisorbed molecules. 

 

Atomic force microscopy imaging 

AFM imaging was conducted using a Multimode V system (Bruker Corp.) with ScanAsyst-Air tips 

(Bruker) in ScanAsyst noncontact mode. Images were processed using the Gwyddion software package.47 

 

Raman and photoluminescence spectroscopy and mapping 

Raman and photoluminescence (PL) spectroscopies were performed in air at room temperature on a 

WITec alpha300R confocal Raman microscope system using a 532 nm excitation laser, 100X objective lens 
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with ~1 µm diameter spot size. The laser power was kept between 0.26 to 0.32 mW to avoid damaging the 

MoS2. The integration times were 1 s. Spatial maps of Raman and PL spectra were acquired at 30 pixels x 30 

pixels, using the 300 grooves/mm grating for the PL spectra and the 1800 grooves/mm grating for the Raman 

spectra. The peak positions, total area intensities, and widths are obtained by Lorentzian fits of the spectra 

using Matlab. The error of the peak position from fitting is estimated to be ~0.5 cm-1. 

 

Scanning tunneling microscopy (STM) imaging 

STM imaging of MoS2 was conducted in an Omicron VT system operating at ultrahigh vacuum 

(UHV) conditions (base pressure 10-10 mbar) and room temperature using electrochemically etched W tips. 

Images were processed using Gwyddion.47 Samples were gently degassed at 200-300°C overnight in vacuum 

before imaging. 

 

Ar plasma treatment 

Point defects (mainly vacancies) in MoS2 were generated by Ar plasma bombardment in a 

Plasmatherm 790 reactive ion etching (RIE) system with 20 sccm flow of Ar, 250 mtorr system pressure, 

6 W setpoint power, and 4 s processing time. The actual power ranged from about 0.7 to 4.8 W during the 4 s 

of processing. 

 

van der Waals ab initio methods 

The calculations reported here are based on ab initio density functional theory using the SIESTA 

method48 and the VASP code.49,50 Results shown herein were produced using VASP, while SIESTA was 

used to perform initial tests with large numbers of atoms in the unit cell. The generalized gradient 

approximation51 along with the DRSLL52 functional, which includes vdW dispersion forces, were used in 

both methods, together with a double-ζ polarized basis set in SIESTA, and a well-converged plane-wave 

cutoff of 500 eV in VASP. Projected augmented wave method (PAW)53,54 for the latter, and norm-conserving 

(NC) Troullier-Martins pseudopotentials55 for the former, have been used in the description of the bonding 

environment for Mo, S, C, N, O, and H. The shape of the NAOs was automatically determined by the 

algorithms described by Soler et al.48 The cutoff radii of the different orbitals were obtained using an energy 

shift of 50 meV, which proved to be sufficiently accurate to describe the geometries and the energetics. 

Atomic coordinates were allowed to relax until the forces on the ions were less than 0.01 eV/Å under the 

conjugate gradient algorithm. To model the system studied in the experiments, we created large supercells 

containing up to 212 atoms to simulate the functionalization between diazonium salts and the basal plane of 

MoS2. To avoid any interactions between supercells in the non-periodic direction, a 20 Å vacuum space was 

used in all calculations. In this way, molecules are allowed to interact only along of the in-plane supercell 
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directions, removing any artificial energy contribution from the out-of-plane periodic images. In addition to 

this, a cutoff energy of 120 Ry was used to resolve the real-space grid used to calculate the Hartree and 

exchange correlation contribution to the total energy. The Brillouin zone was sampled with a 11×11×1 grid 

under the Monkhorst-Pack scheme56 to perform relaxations with and without van der Waals interactions. 

Energetics and electronic band structure were calculated using a converged 40×40×1 k-sampling for the unit 

cell of MoS2-NP. In addition to this we used a Fermi-Dirac distribution with an electronic temperature of 

kBT = 20 meV to resolve the electronic structure.  

 

Chemical vapour deposition (CVD) growth of MoS2 for XPS 

Continuous centimeter-scale thin films of MoS2 for x-ray photoelectron spectroscopy were grown on 

SiO2/Si substrates that were first sonicated in sequential baths of acetone and isopropanol for 5 min each, 

blown dry with ultrahigh purity nitrogen gas, and cleaned in oxygen plasma (Harrick Plasma) at high power 

for 10 min. Solid powder precursors MoO3 (15 mg, Sigma-Aldrich, 99%) and S (100 mg, Alfa Aesar, 99.5%) 

were loaded into separate quartz boats (MTI Corp.) and placed into a 1” diameter quartz tube in a hot-wall 

tube furnace (Lindberg). The MoO3 boat was positioned in the center of the furnace with the target SiO2/Si 

substrate placed face down across the upper edges of the boat. The S boat was positioned at the edge of the 

heating zone where the temperature reaches about 170°C during growth. The quartz tube was pumped down 

to ~6 mtorr vacuum before flowing 300 sccm of ultrahigh purity Ar gas, so that the chamber pressure was 

~1.35 torr during growth. The furnace was heated from room temperature to 650°C over 40 min, kept at 

650°C for 30 min, and then cooled rapidly by shutting off the furnace and then cooling with an external fan. 

This growth procedure results in relatively large area, continuous, and uniform coverage of monolayer and 

bilayer polycrystalline MoS2. The samples are left on the SiO2/Si substrates and directly used in the XPS 

measurements. The four diazonium-functionalized samples were reacted for different reaction times (10 s, 5 

min, 10 min, and 6 h) and rinsed with ultrapure water and blown dry with ultrapure nitrogen gas before XPS 

measurement. The nitrobenzene control samples were dipped directly into undiluted nitrobenzene for 4 h and 

rinsed with isopropanol and dried before XPS measurement. 

 

X-ray photoelectron spectroscopy (XPS) 

XPS spectra were acquired using a Vacuum Generators 220i-XL system with monochromated Al Kα 

radiation (hν = 1486.6 eV), linewidth 0.7 eV, spot size ~400 µm, and chamber pressure ~10-9 torr or lower. 

Spectra were analyzed using the CasaXPS software package to subtract the Shirley backgrounds and fit the 

peaks to Gaussian/Lorentzian functions. Peak positions were shifted using the Si 2p peak from the substrate 

as a reference. Peaks were identified by comparison to known standards and the La Surface database from 
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Centre national de la recherche scientifique (CNRS) in Orleans, France, and ThermoFisher Scientific 

(www.lasurface.com). 

 

MoS2 dispersions and functionalization in solution 

MoS2 was dispersed in sodium dodecyl sulfate (SDS) aqueous solution by microtip probe sonicating 

(Branson Digital Sonifier 450D, 13 mm diameter tip) 8.25 g of MoS2 in 110 mL of 1% SDS solution (w/v) 

for 2 hours in a 250 mL steel beaker at 50% amplitude (power output of 48-50 W). Then 25 mL of this 

dispersion was transferred in 4 separate 50 mL plastic tubes and centrifuged at 4200 rpm for 3.5 hours to 

remove large, undispersed particles. To carry out the functionalization, 100 mg of the diazonium salt was 

added to 20 mL of the MoS2-SDS dispersion and probe sonicated for 2 hours at 20% amplitude with a 3 mm 

diameter tip in a 50 mL tube. The resulting functionalized dispersion was flocculated with ethanol and 

filtered over a hydrophilic PTFE membrane (Omnipore, 100 nm pore size) and washed thoroughly with 

water and ethanol, resulting in a dry film collected on the membrane. 

 

FTIR and UV-vis characterization of bulk dispersions of MoS2 

The dried films of functionalized MoS2 on filter membrane were used to collect Fourier transform 

infrared (FTIR) spectra using a Nicolet 6700 system equipped with a Smart Orbit accessory. To re-suspend 

the samples in solution, the filter membranes were placed in 50 mL tubes along with 15 mL of SDS solution 

and bath sonicated for 2 hours. After sonication, the dispersions were filtered using Millipore vacuum 

filtration system (20 µm pore size) and then their UV-Vis absorbance spectra were collected (Jasco V760 

UV-Visible/NIR Spectrophotometer). A control sample was also prepared in parallel using the same 

conditions as described above, except without the diazonium salt.   

 

Thermogravimetric analysis (TGA) of MoS2 dispersions 

To prepare samples for TGA, 10 mL of the MoS2 dispersion after 4-NBD functionalization was 

mixed with acetone in a ratio of 1:5 to aggregate and remove the SDS surfactant. After aggregation, the 

resulting dispersion was centrifuged for 30 minutes at 5000 rpm. The supernatant was decanted and the 

mixture was washed with 40 mL of DI water. The washing step was repeated three times. After washing, the 

sample was freeze dried to obtain a solid green powder, which was then analyzed using TGA. A control 

sample of the SDS-dispersed MoS2 (without diazonium functionalization) was similarly processed to obtain 

solid green powder for TGA analysis. 

TGA characterization was performed using a Setaram TG92 system. Each sample was purged with 

ultrahigh purity He gas overnight before TGA measurement. The He gas flow rate during the purge and the 

measurement was 30 mL per minute. The heating ramp rate was 5°C per minute up to 900°C. The first 
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derivative curve (DTG) was calculated in Matlab by first smoothing the TG curve using a Savitzky-Golay 

filter and then taking the numerical derivative. 

 

SEM characterization of dried films from MoS2 dispersions 

Dried films of functionalized and unfunctionalized MoS2 on filter membranes were imaged by field 

emission SEM (Hitachi S4700 system) to characterize their morphologies. 

 

4-carboxybenzenediazonim tetrafluoroborate synthesis and characterization 

4-carboxybenzenediazonium tetrafluoroborate (4-CBD) was synthesized following a reported 

procedure.57 Briefly, 1.35 g (0.01 mol) of p-aminobenzoic acid was dissolved in 14 ml of water and 3 ml of 

concentrated HCl. The mixture was cooled in an ice water bath until precipitates appeared. The precipitates 

disappeared after slow addition of sodium nitrite solution. The sodium nitrite solution was prepared by 

dissolving 0.752 g (0.011 mol) of sodium nitrite in 4 ml of water. The solution was vacuum filtered and then 

1.465 g (0.013 mol) of sodium tetrafluoroborate was added. Then the solution was cooled below 0°C to 

obtain white crystals, which were then vacuum filtered and washed with ice-cold ether and water. The 

diazonium salt was dried and then stored at 4°C. 

 

Protein synthesis and purification 

The green fluorescent protein (GFP) expression plasmid was constructed following previously 

described methods using the GFP variant GFPmut3b.58 The GFP gene was inserted into the pET15b (EMD 

Millipore) expression vector downstream of a T7 promoter and the polyhistidine tag sequence, yielding an 

N-terminal his-tagged GFP; and upstream of the T7 transcriptional terminator. The resulting plasmid was 

transformed into E. coli BL21 Star DE3. The transformed cells were cultured in 1 ml of LB medium with 

ampicillin (100 µg/ml) shaking at 37°C in an incubator overnight. The overnight culture was diluted 1:600 

with fresh LB medium containing ampicillin (50 µg/ml) and grown until its absorbance at 600 nm reached 

0.6-0.8. IPTG (isopropyl β-D-1-thiogalactopyranoside) was added into the culture to a final concentration of 

0.5 mM to induce expression of T7 RNA polymerase and in turn trigger GFP production. After 4 hours of 

induction, the cells were harvested by centrifugation at 4000 g for 15 minutes. The cell pellet was 

resuspended in 27 ml lysis buffer (60 µg/ml lysozyme, 3.7 mM NaH2PO4, 16.3 mM Na2HPO4, 50 mM NaCl, 

10 mM imidazole, 0.1 Protease Inhibitor Cocktail Tablet/ml) and sonicated at 4 W using a microtip probe 

(Branson Digital Sonifier 450D, 3 mm diameter tip). Three hundred 2-second pulses with a 2-second off time 

between each pulse were performed in an ice bath. The lysate was then centrifuged at 12,000 g for 30 min at 

4°C. Approximately 25 ml of supernatant was collected and filtered through a 0.22-µm membrane filter. 

Purification was performed using fast protein liquid chromatography (FPLC) with a HisTrap HP column. 
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After equilibrating the column using 100% Buffer A (3.7 mM NaH2PO4, 16.3 mM Na2HPO4, 500 mM NaCl, 

20 mM imidazole, 0.3 mM TCEP, pH 7.5), 10 mL cleared lysate was loaded into the column, washed with 

10% of Buffer B (3.7 mM NaH2PO4, 16.3 mM Na2HPO4, 350mM NaCl, 500 mM imidazole, 0.3 mM TCEP, 

pH 7.5) and 90% of Buffer A, and eluted with 50% of Buffer B and Buffer A. Fractions were collected by 

monitoring the absorbance at 280 nm for the peak in its profile associated with the purified protein. Purified 

fractions collected from three FPLC runs were concentrated using Amicon (10 kD cutoff filters) and then 

stored in 50 mM NaH2PO4, 300 mM NaCl, pH 8.3. For smaller protein preparations, Ni-NTA spin columns 

(Qiagen) were used for purifying the His-tagged proteins. mCherry plasmid and protein preparation were 

performed using the same procedures as those used for GFP. 

 

Protein attachment 

The protocols used for protein attachment were similar to previous reports of protein attachment to 

graphene.59,60 MoS2 flakes exfoliated onto SiO2/Si wafers were immersed in a 10 mM solution of 4-CBD and 

heated to 53-55°C for 2 hours. Then the samples were washed with water, acetone, IPA and water again 

sequentially. After drying, they were immersed in a solution of 2 mM EDC and 5 mM sulfo-NHS solution 

prepared in 2-(N-morpholino)ethanesulfonic acid (MES) buffer (0.1 M MES sodium salt, 0.5 M NaCl, pH 

adjusted to 6 with 1.0 N HCl) for 20 min. The samples were rinsed with water and immediately immersed 

into 11.3 mM solution of Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA-NH2) prepared in 1x PBS for 2 

hr. The wafers were washed with water and dipped in 11.3 mM solution of NiCl2 for 40 min. The wafers 

were again rinsed with water and immersed in 8 µM solutions of His-tagged GFP or His-tagged mCherry or 

1:1 mixtures of the two proteins for 1 hour and rinsed with water twice and then air dried. 

 

Confocal microscopy imaging 

Confocal fluorescence microscope images were collected with a Leica TCS SP5 Spectral Confocal 

System using lasers with 488 nm and 561 nm wavelengths. 

 

Results and discussion 

 

Chemical functionalization by aryl diazonium salts 

 

Aryl diazonium salts were used to functionalize MoS2. These reagents have been previously used to 

covalently functionalize carbon nanotubes,17,61 graphene,16,60,62-65 and phosphorene66; however, these other 

materials have very different electronic structures and chemical reactivity than MoS2, which has a highly 

inert surface. Unexpectedly, we found direct evidence of covalent functionalization of unmodified 
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semiconducting MoS2 by aryl diazonium salts. We first used 4-nitrobenzenediazonium (4-NBD) 

tetrafluoroborate salt in aqueous solution to functionalize MoS2 (see Methods for more details). This 

diazonium salt is a model system that been used to functionalize other nanomaterials, and is chosen here so 

that we can focus on the unique reaction mechanism with MoS2. A schematic illustration of the reaction 

process is shown in Figures 1a-c: (a) the 4-NBD diazonium salt in solution approaches the MoS2 surface; (b) 

charge rearrangement at the surface allows the N2 group to break off and form a nitrogen molecule while the 

remaining aryl group becomes a radical; and (c) a covalent C–S bond forms to produce MoS2 functionalized 

by nitrophenyl (NP) groups.  

The covalent functionalization was first demonstrated using mechanically exfoliated MoS2 single 

crystal flakes. An optical microscope image of an atomically thin MoS2 flake on a SiO2/Si substrate is shown 

in Figure 1d. This flake was characterized by Raman spectroscopy and AFM imaging to identify the layer 

numbers of the marked regions as monolayer (1L), bilayer (2L), and four-layer (4L), with the height profile 

from AFM imaging along the dashed line shown in the inset of Figure 1e. (Additional Raman data are 

shown in Figures S1 and S2 of the Supporting Information.) The typical photoluminescence (PL) spectrum 

of the1L MoS2 from this sample is shown in Figure 1f, with the A and B excitons and A- trion peaks 

labeled.5,39,67 The spatial map of the total PL intensity in Figure 1h shows the higher PL from monolayer 

MoS2 due to its direct bandgap.5 After 5 s of functionalization by 4-NBD, the PL spectrum shows only small 

changes: a slight increase in intensity and very similar energies and peak shapes (Figure 1g), suggesting that 

the semiconducting electronic structure of MoS2 is not disrupted by the chemical bonds. (Further analysis of 

the PL of MoS2 with chemical functionalization is shown in the Supporting Information in Figures S4 to 

S7.) 

Changes in the sample topography with 4-NBD functionalization are observed by AFM. In Figures 

1j-k, AFM images show the region marked by the dotted square from Figure 1e. This area features a large 

1L region of MoS2, and a smaller 2L region on the left, which both initially appear smooth and flat. After 5 

seconds of reaction with 4-NBD, Figure 1k shows numerous protrusions on the MoS2 surface. These 

features have appeared after functionalization, and we interpret them to be organic functional groups attached 

to the surface, which is discussed in further detail below. The protrusions are arranged in a chain-like 

geometry and display no order in their attachment across the surface. A slightly higher density of protrusions 

is present on the 2L region compared to the 1L, indicating thickness dependent functionalization of the 

MoS2, which is discussed in further detail below. 
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Figure 1: Covalent functionalization of MoS2. (a)-(c) Schematic illustrations of the functionalization reaction. The aryl diazonium 
salt 4-nitrobenzenediazonium (4-NBD) tetrafluoroborate (BF4) is dissolved in aqueous solution. Charges at the MoS2 surface cause 
the diazonium group to break from the molecule as a nitrogen (N2) molecule. The resulting nitrobenzene radical forms a covalent 
bond to a sulfur atom on the surface, resulting in a nitrophenyl (NP) functional group. (d) Optical microscope image of mechanically 
exfoliated MoS2 flake with monolayer (1L), bilayer (2L), and four-layer (4L) regions marked. (e) Atomic force microscope (AFM) 
image of the region marked by the dotted square in panel (d) of the pristine MoS2 flake. Inset: Height profile along the dashed line. 
(f) Representative photoluminescence (PL) spectrum of 1L MoS2 before reaction with 4-NBD, and (g) after 5 s reaction. Lorentzian 
lineshapes were used to fit the A and B exciton and A- trion peaks. The spectra are normalized to the height of the Raman peaks. (h) 
Spatial map of total integrated intensity of PL for MoS2 in the region marked by the dotted square in panel (d) before reaction and (i) 
after 5 s reaction. The PL intensity is highest for monolayer MoS2 due to its direct bandgap. (j) AFM image of the region in the 
dashed square in panel (e), with mainly 1L MoS2 and a small region of 2L MoS2, before reaction and (f) after 5 s reaction. Many 
small protrusions in chain-like shapes are observed. 
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Atomistic mechanisms of chemical functionalization 

 

To better understand the chemical functionalization of MoS2 by diazonium molecules, we performed 

density functional theory (DFT) calculations including van der Waals (vdW) dispersion forces as shown in 

Figure 2. (See Methods section for details.) Overall, we obtain strong theoretical evidence for a cooperative 

reaction mechanism where the existence of a single initiation site allows the rest of the pristine 

semiconducting MoS2 surface to be covalently functionalized. The simulations show that the covalent 

functionalization reaction with 4-NBD indeed cannot proceed for completely pristine MoS2 due to its 

unfavorable energetics (see reactions IV and V in Figure S8 of the Supporting Information). Instead, the 

presence of a single sulfur vacancy (S-vacancy) allows the reaction to proceed with a stable binding energy 

(from -1.03 to -1.53 eV per molecule), which is downhill in energy as the chemical reaction evolves. This 

suggests that S-vacancies serve as nucleation centers for the initial functionalization. (See Figure S8 of the 

Supporting Information for additional scenarios between the 4-NBD molecule and MoS2 surface that were 

considered, and Figure S9 for the energetics of the reaction as it proceeds.)  

The role of covalently attached molecules in the overall reaction mechanism was also explored by 

DFT, leading to a picture of a cooperative process. Figure 2a shows the calculated binding energy per 4-

NBD molecule as a function of molecular coverage levels for different S-vacancy concentrations. In the 

pristine MoS2 case (0.00% concentration of S-vacancies), once the first NP groups bind to the surface, they 

induce charge reorganization and increased reactivity in the surrounding MoS2 in an area in the range of 9.23 

to 36.92 Å2 (see Figure S10 in Supporting Information). This change decreases the energetic barrier for the 

adsorption and reaction of subsequent 4-NBD molecules, so the binding energies increase in magnitude 

(become more negative) as a function of increasing molecular coverage. We observe that this effect extends 

for several unit cells across the MoS2 surface, and that it is specific to S-atoms in the same sublattice (Figure 

2b). This result indicates that the molecule itself plays an active role in propagating the surface 

functionalization, creating new nucleation centers for neighbouring molecules even if there are no initial 

MoS2 defects. In this process, the molecules tend to be packed together forming chains as indicated in the 

calculated molecular configurations in Figure 2b and the schematic in Figure 3a, rather than attaching at 

isolated and disperse locations. That is, the molecules are behaving cooperatively during the 

functionalization process to help propagate the reaction. This behavior is an important finding in the overall 

covalent functionalization mechanism. 
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Figure 2: Theoretical calculations of the effects of defects, coverage and number of layers on the functionalization of MoS2. 
(a) Binding energy (eV) per molecule as a function of molecular coverage (%) on the surface of monolayer MoS2. The binding 
energy is defined as E = E[MoS2+NP] – E[NP] – E[MoS2]. Different S-vacancy concentrations ranging from 0 to 4.16% are shown as 
coloured traces. The shaded region indicates the estimated concentration of reacted groups from our experiments. The inset shows the 
variation of the binding energy relative to pristine surface as S-vacancies are introduced into the system. (b) Isosurface of the charge 
density distribution (±0.8 e/Bohrs3) of NP molecules on MoS2 surface at no defects. Molecular coverage of 11.1%. Color scheme 
shows: Mo (green), S (underneath the charge density in orange), O (red), and N (blue). (c) Binding energy (eV per molecule) as a 
function of the number of layers for pristine (upper panel) and defective (lower panel) MoS2 surface with 12.5% S-vacancy 
concentration. The dashed line in the pristine case is the average along the entire set of thicknesses, and in the defective case is the 
interpolation between the points.  (d) Dipole moment at the MoS2 surface as a function of the number of layers for pristine and 
defective (12.5% S-vacancies) MoS2 before (upper panel) and after (lower panel) the functionalization.  (e) Band structure of 7L 
pristine and defective (12.5% S-vacancy concentration) MoS2 surface, before and after the functionalization takes place. The Fermi 
level is marked by the red dashed line in each panel. (f) Isosurface (±0.04 e/Bohrs3) of the defect states near the Fermi level for 7L 
pristine MoS2. Blue and red isosurfaces represent positive and negative values, respectively, of the Kohn-Sham orbitals at the M-
point. 
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As the molecular coverage increases, a further increase in the stability is observed reaching some 

saturation at ~16%. Interestingly, when more molecules are added on the surface, slight decreases of the 

magnitude of the binding energies are observed, as some molecules can be detached from the S sites at the 

limit of ~50% coverage or when the intermolecular distance is about one unit cell (see Movies S1 and S2 in 

Supporting Information). This change in binding energies as a function of molecular coverage indicates a 

subtle balance between adsorbate–adsorbate and adsorbate–surface interactions, which drives the system to 

an optimal coverage. The process of NP groups detaching from the MoS2 surface is observed to depend on 

the way that the benzene ring of the NP molecules interacts with their nearest neighbour molecules. The 

degree of torsion of the benzene ring determines the relative stability when several molecules are attached to 

the surface and interact through their pz-orbitals (see Movies S2 and S3 and Figures S10 and S11 in the 

Supporting Information). We observe a dip in the binding energies at several S-vacancy levels centred 

around 10% coverage and extending to about 8-12%, suggesting that there might be an optimal 

concentration. This range is close to the experimental coverage we estimate from thermogravimetric analysis 

(TGA) measurements discussed below, which is marked as the shaded range in Figure 2a. 

Once defects such as S-vacancies are present in the top layer of MoS2, we calculate that there is a 

further energy gain for attaching additional molecules. The dark blue, light blue, and green plots in Figure 

2a show the binding energy for three different initial concentrations of S-vacancies as a function of 

molecular coverage. These results show that the stability of the NP molecules increases with increasing 

vacancy concentration. Using a molecular coverage of 11.2%, which is within our estimated optimum 

concentration, and varying the concentration of initial S-vacancies on the MoS2 surface between 0 and 4% 

(see inset in Figure 2a), energy gains of 0.2 eV per molecule can be achieved at a small amount of disorder. 

This suggests that the addition of S-vacancies in MoS2 can increase the initial rate of 4-NBD 

functionalization, but does not control the final concentration of functionalized sites. 

Next, we investigated the effect of the number of layers on the energies associated with 

functionalization of pristine MoS2 and MoS2 with some defects, as experimentally observed in Figure 1k. 

Based on DFT calculations, Figure 2c shows that when no defects are present, there are small fluctuations in 

the binding energies (<0.05 eV) of NP on MoS2 as a function of layer number, and that they are centred 

around the average value of about 1.12 eV per molecule (horizontal dashed line). Once S-vacancies are 

introduced at ~12.5% concentration, a systematic increase of the binding energy with layer number is 

observed with an energy gain of about 0.14 eV per molecule at 7 layers. This indicates that for MoS2 with 

some defects, multilayers are more reactive than thin layers. This trend is consistent with our experimental 

observations that MoS2 samples with more layers have a denser spatial coverage of covalently attached 

organic groups, as seen in AFM images of 1L, 2L and 4L regions in Figures 1 and 3, and in Figure S13 of 

the Supporting Information. 
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The driving force for this layer- and defect-dependent effect can be appreciated in Figure 2d, which 

shows the variation of the surface dipole moment before (top panel) and after functionalization (bottom 

panel) as a function of layer number. In the absence of S-vacancies, no dipole moment is created at the top 

layer and the NP molecule interacts with the same bare surface regardless of the number of layers underneath. 

At a finite concentration of defects, a surface dipole moment is created due to the dangling bonds at the 

defect site (see Figure S12 in Supporting Information) and increases slightly in magnitude with increasing 

layer thickness following the enhancement of polarization charge at the surface. This dipole makes the 

interactions with the NP molecules much more efficient and enhances the binding energy with the surface for 

different numbers of layers. This layer number dependent trend is in general agreement with the 

experimental results as shown in Figures 1 and 3 for 1L, 2L and 4L MoS2 layers.  

It is worth noting that the 4-NBD molecule itself has a dipole moment as high as 3.83 Debye in the 

gas phase, which is partially present at either at the pristine or defective surface once the functionalization 

takes place (bottom panel in Figure 2d). This suggests that dipole-dipole interactions between the S-vacancy 

site and the 4-NBD molecule are important factors to catalyze the formation of the covalent bond on the 

surface. We can also observe that defect states become pinned at the Fermi level (Figure 2e and Figure S12), 

generating partially filled states that can create an additional charge density to stabilize the S-NP bond. Such 

defect states are observed at both the defective and pristine surfaces showing a character that is composed of 

a combination of the molecular orbitals from both the molecule (2spz C-states) and the surface (3sp S-states) 

(Figure 2f). For the defective surface, however, these states are already present before the functionalization, 

which explains the increase of the adsorption strength on the S-vacancy site relative to pristine surfaces. The 

strategy of introducing S-vacancies to initialize the functionalization of NP is therefore a contributing factor 

in the engineering of the electronic structure of the bare MoS2 surface, in addition to the interaction between 

adsorbates. 

 

Surface coverage and initialization of functionalization 

 

Based on the DFT results described above, we propose the reaction scheme illustrated in Figure 3a. 

While the completely pristine MoS2 basal plane is unreactive (light green area), the region around a S-

vacancy or defect (white circle) has a higher density of states and thus enhanced reactivity (dark green area). 

Consequently, 4-NBD will react in that region of enhanced reactivity, resulting in a covalently bound NP 

group at a S atom. The newly attached NP group in turn establishes around it a new region of higher density 

of states and charge density, which contains contributions from both the overlapping charge densities of the 

functionalized site and the adsorption-induced charge reorganization from the new molecule. This charge 

rearrangement minimizes the Pauli repulsion, allowing for increasing electrostatic attraction between the 
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basal plane and the NP group. This new region of enhanced reactivity then encourages attachment of 

additional molecules to the surface. Subsequent molecules that attach near the bound NP will further extend 

and reinforce the region of higher reactivity, thus resulting in chain-like growth propagation that can start 

from a single defect site and eventually span the entire MoS2 surface. The intentional formation of S-

vacancies by methods such as Ar plasma bombardment can thus be used to tailor the number of initiation 

sites for the reaction and alter the speed and paths over which the reaction propagates over the MoS2 surface. 

Notably, this new reaction mechanism involving defects and propagating regions of higher charge density is 

different from models previously proposed for MoS2 edges where a substantial charge density is present at 

the uncoordinated atoms.35,68 

 
Figure 3: Molecular coverage as a function of reaction time and initial defect sites. (a) Schematic illustration of the growth of 
molecular coverage on MoS2 with 4-NBD reaction time. The light green background represents the MoS2 surface, the dark green 
represents regions of increased reactivity surrounding defects and covalently attached nitrophenyl (NP) groups, the white circles 
represent vacancies or defects, and the orange circles represent covalently attached NP groups. Molecules preferentially attach at 
regions of increased reactivity near defects or other previously attached molecules. (b) Scanning tunneling microscopy (STM) image 
of as-exfoliated atomic lattice of MoS2. (Imaging conditions: -1.6 V sample bias, 0.4 nA tunneling current) (c) STM image of MoS2 
after Ar plasma treatment at 6 W for 4 s, showing point defects. (Imaging conditions: -1.7 V, 0.5 nA) (d)-(g) AFM images of as-
exfoliated MoS2 and after different 4-NBD reaction times: 5 s, 1 min, and 30 min. The green squares indicate the same location on 
the sample in each image. (h)-(k) AFM images of Ar plasma treated MoS2 after different 4-NBD reaction times. The blue squares 
indicate the same location on the sample in each image. In all AFM images, 1L and 2L refer to monolayer and bilayer regions, 
respectively. 
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To further explore the effects calculated by DFT and to validate our model, we have carried out 

detailed scanning probe microscopy studies of functionalization of MoS2 samples with and without initial 

defects and over different 4-NBD reaction times. On the pristine mechanically exfoliated MoS2 samples, 

scanning tunneling microscopy (STM) imaging shows the atomic lattice without any defects (Figure 3b). In 

general, we observed very few defects while imaging over large regions of the sample. Previous work in the 

literature shows that S-vacancies are the most common type of defects in mechanically exfoliated MoS2.69 

We then used Ar plasma treatment in a reactive ion etching (RIE) system to generate point defects in MoS2 

(see Methods for details).70,71 STM images of the Ar plasma treated MoS2 (Figure 3c and Figure S14 in the 

Supporting Information) indicate an average defect concentration of ~1-2%, with some smaller areas being 

more defective (~4-5%). These defects appear to be small depressions surrounded by a ~1 nm radius of 

increased brightness, which we interpret to be S-vacancies.72 

AFM imaging was used to track the progress of the functionalization reaction over time for both 

pristine and Ar plasma treated MoS2 samples. For the as-exfoliated pristine sample (Figure 3d), at 5 s 

reaction time (Figure 3e) we observe small chain-like protrusions of ~2 nm height across the MoS2 surface, 

with a higher density of coverage in the 2L region of the sample. There are no protrusions on the surrounding 

SiO2 substrate. We interpret these protrusions to be covalently attached NP groups, as they are consistent 

with our previous experimental and DFT results, and because the sample is thoroughly rinsed at each 

reaction step to remove any physisorbed molecules. At 1 min reaction time (Figure 3f), the density of 

protrusions is higher, and the regions of unreacted MoS2 are smaller. The initial chain-like clusters appear to 

have grown larger or longer, rather than new clusters nucleating. By 30 min reaction time (Figure 3g), the 

reacted groups are even more densely covering the MoS2, and the remaining unreacted areas of MoS2 are 

observed as small depressions between the molecular groups. We note that the denser molecular coverage in 

thicker 2L MoS2 regions is also seen in the additional AFM images in Figure S13 of the Supporting 

Information, which shows that there is higher coverage in 2L and 4L regions, in agreement with our DFT 

results for higher reactivity with increasing layer number shown in Figure 2. 

The Ar plasma-treated MoS2 sample is shown in Figures 3h-k for different 4-NBD functionalization 

times. Raman and PL spectra of the same sample (Figure S3 and S4 of the Supporting Information) show 

that the overall structure and electronic and optical properties of the MoS2 are not significantly changed by 

the Ar plasma treatment. Upon functionalization with 4-NBD, the protrusions at 5 s reaction time (Figure 3i) 

are present at a much higher areal density than observed with the as-exfoliated MoS2 (Figure 3e). With 

increasing reaction time the protrusions become interconnected on the surface, while still leaving some 

portions of MoS2 unreacted (Figure 3j-k). These experimental observations of more reacted sites at short 

reaction times for the sample with more S-vacancy sites corroborate the picture of 4-NBD functionalization 

we have developed from DFT calculations. 
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Optical and chemical characterization 

 

The preservation of the structure and semiconducting properties of MoS2 with diazonium 

functionalization is shown by optical characterization using Raman and PL spectroscopies (see Figures S4 to 

S7 in the Supporting Information for more discussion). The Raman spectra of initially pristine MoS2 and Ar 

plasma treated MoS2 at increasing 4-NBD functionalization times show that the main A1g and E1
2g peaks 

remain unchanged, and that defect-associated peaks do not make a noticeable appearance. The PL spectra 

similarly show only small changes in positions and intensities of the main peaks, indicating that the 

electronic structure of the semiconducting MoS2 is intact. In the initially pristine MoS2 sample, the relative 

decrease in intensity of the exciton (A peak) with respect to the trion (A- peak) as well as the widening gap in 

positions between these two peaks with increasing reaction are both consistent with increasing n-doping (see 

Figure S6 in the Supporting Information). Based on changes in PL peak positions, which are correlated with 

changes in exciton energies with doping, we estimate that the MoS2 becomes more n-doped with ~7 meV 

increase in Fermi level (see Figure S6 and pages 7-8 in the Supporting Information for more details).67  

X-ray photoelectron spectroscopy (XPS) was used to characterize the chemical bonding occurring 

from diazonium functionalization (see Methods section for more details). Large-area samples of 

polycrystalline MoS2 grown by chemical vapor deposition (CVD) with a mixture of monolayer and bilayer 

regions were functionalized by 4-NBD under the same reaction conditions as shown in the previous 

experiments for different reaction times: 10 s, 5 min, 10 min, and 6 h. Control experiments were also 

conducted by immersing MoS2 in concentrated nitrobenzene for 4 h. Nitrobenzene lacks the diazonium group 

that is crucial to the covalent reaction mechanism, so only physisorption is possible.73 (See Supporting 

Information, Figure S15, for more data from nitrobenzene control experiments including AFM images that 

show the morphology of the physisorbed molecules on MoS2 is quite different from the covalently bound 

molecules.) 

The resulting XPS spectra from these experiments are shown in Figure 4, and are normalized to the 

intensity of the Mo peak since the Mo atoms are sandwiched between S atoms and do not participate in 

surface reactions. The black curves are the experimental data and the coloured curves are peak fits. (Further 

characterization of the CVD-synthesized MoS2 is shown in the Supporting Information, Figure S16). We 

examine changes in the N, C, Mo, and S curves to obtain evidence that the 4-NBD reaction results in 

covalent functionalization and the growth of an organic layer, and that the nitrobenzene control lacks such 

evidence. 
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Figure 4: X-ray photoelectron spectroscopy (XPS) of functionalized MoS2. XPS spectra for MoS2 synthesized by chemical 
vapour deposition (CVD) (bottom spectrum), and reacted with 4-NBD for 10 s, 5 min, 10 min, and 6 h (middle four spectra). XPS 
spectrum of MoS2 exposed to nitrobenzene as a control reaction (top spectrum) without the diazonium functional group, so that 
covalent functionalization is not possible and only physisorption is possible. Spectra are vertically offset for clarity. (a) Nitrogen 1s 
region: As-synthesized MoS2 shows peaks from Mo3+ and Mo4+. After 4-NBD reaction, there are new N–O and N–C peaks, which 
increase in intensity with reaction time. The nitrobenzene control does not have these N-related peaks. (b) Carbon 1s region: As-
synthesized MoS2 shows C peak from adventitious carbon. After 4-NBD functionalization there is a peak from C=C in the benzene 
ring, and after nitrobenzene exposure the C peak is only slightly increased due to some residual physisorbed nitrobenzene. (c) 
Molybdenum 3d region: All spectra show nearly identical peaks corresponding to Mo and S. The Mo peaks have contributions from 
mainly MoS2 but also some from small amounts of the MoO3 precursor used in the CVD process. (d) Sulfur 2p region: all three 
spectra show the characteristic split peaks for S due to spin-orbit splitting. In the 4-NBD functionalized spectra at 10 min and 6 h, 
there is a new peak attributed to C–S bonds that increases in intensity with increasing reaction time. Wide scan XPS spectra are 
shown in Figure S17 of the Supporting Information. 
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In Figure 4a, we observe two peaks due to Mo 3p for all the reaction conditions. With increasing 4-

NBD functionalization time, peaks from N–O and N–C bonds arise and increase in intensity, due to the NO2 

group in the 4-NBD molecule being attached to the MoS2 surface. However, the nitrobenzene control sample 

shows no N peak, even though concentrated nitrobenzene was in contact with the MoS2 for 4 h, indicating 

that no covalent bonds to the surface have formed; even the 10 s diazonium functionalized sample has a 

much larger N–O peak. 

In Figure 4b, a small adventitious carbon peak occurs for as-synthesized MoS2. With increasing 4-

NBD functionalization time, the C peak attributed to aromatic C=C bonds, C–N bonds from the nitrophenyl 

groups74 covalently attached to the MoS2 surface, and C–S bonds at the functionalization sites increase in 

intensity and becomes quite large at 6 h, with the main contribution coming from C=C. In the spectrum for 

the nitrobenzene control, the C peak is similar in size to the initial adventitious carbon peak from 

unfunctionalized MoS2, and perhaps slightly larger due to some residual physisorption of molecules. This 

behaviour is again consistent with no covalent bonding to the MoS2 surface when the diazonium group is 

absent. There is also no C–Mo bond, indicating the NP molecules are only bonding with the S atoms at the 

top surface, and not with any Mo atoms in the middle of the S-Mo-S sandwich-like structure of MoS2. In 

Figure 4c, the typical peaks associated with the Mo and S in MoS2 and some small Mo peaks from with 

residual MoO3 precursor75,76 are not significantly changed after functionalization, since the Mo atoms do not 

participate in surface reactions.  

In Figure 4d, we observe the two characteristic S peaks due to spin-orbit splitting. With 4-NBD 

functionalization, a new peak associated with C–S bonds77,78 appears, suggesting the successful formation of 

covalent bonds between the C atoms in aryl groups and the S atoms at the top surface of MoS2. This peak is 

relatively small, even for the 6 h diazonium functionalized sample, because not all surface atoms are reacted 

according to our DFT calculations, and because the samples are bilayer in some regions there is a larger 

contribution from the unreacted S below the top surface. From additional thermogravimetric analysis (TGA) 

measurements discussed below, we estimate ~12% coverage of covalently reacted sites on the MoS2 surface, 

which is close agreement with DFT predictions described above. Another possible factor is that some of the 

4-NBD groups may be attaching to existing covalently bound groups to form oligomers rather than to the 

bare MoS2 surface, so that the number of C–S bonds does not increase in proportion to the overall amount of 

additional N and C on the surface with increasing reaction time. Similar oligomer formation was reported for 

aryl diazonium functionalization of graphene,62 and the formation of bonds to existing molecules is generally 

more energetically favourable than the bond to the S-atoms by ~3-4 eV.  
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Functionalization of solution phase dispersions of MoS2 

 

To demonstrate the wide-ranging application of our functionalization method, we also functionalized 

bulk unmodified MoS2 dispersed in aqueous surfactant solution (Figure 5). The resulting functionalized 

MoS2 flakes provide further evidence of covalent bond formation and display enhanced stability in aqueous 

dispersions. The process of dispersion and functionalization is illustrated in Figure 5a. Bulk powder MoS2 

was probe-sonicated in an aqueous solution of sodium dodecyl sulfate (SDS) to exfoliate it into sheets that 

are stabilized by the SDS molecules (Figure 5b(i)). Then, 4-NBD was added and the mixture was probe-

sonicated to allow the diazonium salt and pristine MoS2 sheets to react. Sonication helped in producing more 

accessible sites between layers for the diazonium salt to react, encouraging more efficient functionalization. 

To remove excess 4-NBD, the resulting dispersion was flocculated with ethanol, collected on a filter 

membrane and washed thoroughly with water and ethanol. (See Methods section for additional details.) A 

control sample of unfunctionalized MoS2 was also prepared following the same procedure, but leaving out 

the 4-NBD functionalization step. The unfunctionalized MoS2 and functionalized 4-NBD/MoS2 materials 

collected on the filter membranes form a continuous thick film with similar colours as their dispersions (see 

Figure S23 in Supporting Information). 

The 4-NBD/MoS2 and MoS2 materials collected on the filter membranes were characterized by 

Fourier transform infrared (FTIR) spectroscopy. In Figure 5c, the FTIR spectrum of diazonium-

functionalized MoS2 clearly shows the presence of characteristic peaks that confirmed successful covalent 

modification MoS2 in bulk dispersions. The peaks at ~1518 cm-1 and ~1344 cm-1 represent the stretching 

vibrations of the N-O bond in the NO2 group, the peak at 1595 cm-1 represents C=C stretching vibrations in 

the aromatic ring, and the peak at 697 cm-1 can be assigned to S-C stretching vibrations at the covalent bond 

between the MoS2 surface. 

After acquiring the FTIR spectra, the films were re-dispersed in a fresh SDS solution using bath 

sonication (see Methods section for further details). The diazonium-functionalized MoS2 material gave a 

highly concentrated dispersion after bath sonication (Figure 5b(iii)) in contrast to unfunctionalized MoS2, 

which was only weakly re-dispersed (Figure 5b(ii)). This change in dispersibility can be attributed to a 

change in surface energy, a phenomenon which has been previously reported for dispersions of TMDCs,34,79 

and for covalently functionalized graphene.19,20 The change in dispersibility is also reflected in the 

morphologies of the unfunctionalized and functionalized MoS2 films, as shown in scanning electron 

microscopy (SEM) images in Figure S23 of the Supporting Information. The unfunctionalized MoS2 forms a 

densely packed film that has many large cracks of 50-100 µm length and 5-10 µm width, but not many 

distinct particles or flakes. In contrast, the functionalized 4-NBD/MoS2 film is much more uniform without 

any cracks, but more visible particles. 
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Figure 5: Bulk solution phase functionalization of MoS2. (a) Schematic diagram of solution phase exfoliation and 
functionalization processes. The initial MoS2 powder material was exfoliated and dispersed by ultrasonication in an aqueous solution 
of sodium dodecyl sulfate (SDS), which causes thin flakes of MoS2 to separate and become encapsulated by SDS molecules. The 
dispersed MoS2 flakes were then directly functionalized by 4-NBD in solution, resulting in a stable dispersion of covalently 
functionalized MoS2. (b) Photographs of different MoS2 preparations: (i) a dark green suspension of MoS2 in SDS; (ii) a pale green 
suspension of MoS2 that has been dispersed, dried and restacked, and redispersed in SDS, showing ineffective redispersion after 
restacking; and (iii) a dark green suspension of MoS2 that has been dispersed and functionalized in 4-NBD, dried and restacked, and 
redispersed, showing that the functionalization allows for effective redispersion. All suspensions were centrifuged to remove 
undispersed parts. (c) Fourier transform infrared (FTIR) spectra for dried films of unfunctionalized MoS2 (blue curve) and 4-NBD 
functionalized MoS2 (red curve). Peaks corresponding to the nitrophenyl groups (C=C stretch, N-O stretch) and the covalent 
functionalization (S-C stretch) are indicated. The peaks marked (*) come from the PTFE substrate supporting the thin films. (d) UV-
vis absorbance curves for MoS2 suspensions in SDS (blue curve) and 4-NBD functionalized MoS2 (red curve). The A and B exciton 
peaks are labeled. The A peak redshifts after 4-NBD functionalization. (e) Thermogravimetric analysis (TGA) mass loss curve for 
MoS2 (blue curve) and 4-NBD functionalized MoS2 (red curve). (f) TGA derivative (DTG) curves for the mass loss curves in panel 
(e), showing dips corresponding to key mass loss components. 

 



23 

Optical absorbance spectra (UV-vis) were obtained for the re-dispersed samples (Figure 5d) which 

showed peaks at ~605 nm and ~660 nm attributed to the B and A excitonic transitions, respectively.80 After 

functionalization, the B peak position remains the same while the A peak shifts toward longer wavelengths. 

While Eda et al.80 have shown a redshift in both A and B peaks for thicker MoS2 layers due to the change in 

band structure, we only see a redshift in the A peak, and we do not expect the functionalized MoS2 to re-

aggregate into thicker flakes because the 4-NBD groups prevent restacking. Instead, we postulate that the 

redshift can be attributed to electronic coupling of excitons to the conjugated aromatic groups attached to the 

MoS2 surfaces. A similar exciton redshift has been observed for CdSe quantum dots coated in 4-

mercaptobenzoic acid, which has a similar aromatic ring.81 The increase in absorbance for functionalized 

MoS2 below ~575 nm is attributed to absorbance of the attached organic groups. 

Further characterization of the bulk MoS2 dispersions with and without diazonium functionalization 

was conducted using thermogravimetric analysis (TGA) (see Methods for details). The TGA curves and first 

derivative curves are shown in Figure 5e and Figure 5f, respectively. The functionalized and 

unfunctionalized MoS2 both show a small mass loss below 100°C, which may be due to residual adsorbed 

water and other small molecules. There is also some mass loss below 200°C, which is more prominent for 

the functionalized MoS2, that may be due to removal of van der Waals bonded molecules, similar to the 

observation of Knirsch et al.31 for the functionalization of lithiated phase-transformed MoS2. The diazonium 

salt by itself has a significant mass loss by about 160°C (see Supporting Information, Figure S18), likely 

corresponding to a combination of sublimation and decomposition. 

A sharp and prominent mass loss peak, corresponding to a mass loss of about 8%, occurs between 

200°C to 300°C, with the maximum loss rate occurring at about 225°C. This sharp mass loss peak suggests 

the breaking of covalent bonds for species attached to the MoS2 surface and the loss of nitrophenyl groups 

from the surface. There is also continued mass loss above 300°C, but it occurs at a faster rate, and with an 

additional peak at ~650°C and accelerating further above 800°C, which can be attributed to lattice 

degradation at higher temperatures. Using the total mass loss of the functionalized sample between 100°C 

and 450°C, which is about 15.7%, and using the molar masses of nitrobenzene and MoS2, we estimate a 

surface coverage of about 24% assuming both sides of a monolayer MoS2 flake in solution are available, or 

approximately 12% coverage on each side. This value is in direct agreement with the optimal concentration 

of ~8-12% predicted from DFT. This value is also comparable to the values estimated by Knirsch et al.31 for 

the functionalization of lithium-treated phase-transformed MoS2, which also showed the main mass loss due 

to covalently attached groups occurring between about 200 to 450°C. Thus, we have achieved a similar 

degree of functionalization without the use of lithium treatment using the defect-mediated cooperative 

mechanism. This temperature-dependent behaviour is also consistent with the removal of functional groups 

from mechanically exfoliated functionalized MoS2 upon thermal annealing, as shown in the AFM images of 
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Supporting Information, Figure S19, which shows that after annealing at 500°C the bound groups are largely 

removed. 

 

Protein attachment 

 

MoS2 is an attractive material for biological applications because it is biocompatible,82 and it 

provides a large surface area for functionalization and for interaction with biomolecules, and its 

semiconducting properties enable MoS2 to be used for biomolecule sensing via changes in charge transport 

or fluorescence. The large area and 2D nature of MoS2 also provide the potential for patterned arrays of 

devices for multiplexed detection schemes. Thus, examples of MoS2 and TMDCs used in biological 

applications26-28 include bioimaging,46 drug delivery and treatment,46,83 and biosensing.84 Previous studies 

have highlighted the excellent properties of MoS2 for biosensing by incorporating it into field-effect 

transistors (FETs) that provided substantial sensitivity improvements over graphene-based devices85 and, 

using gate dielectrics functionalized with protein antibodies, detection limits down to 60 fM concentrations.86 

However, direct covalent attachment of proteins to the MoS2 has the potential to dramatically improve device 

sensitivity by bringing protein-analyte interactions to the semiconductor surface.87 The ability to covalently 

tether active proteins to the surface of semiconducting MoS2 thus represents a critical step to realizing the 

full biosensing potential of MoS2. Accordingly, we developed a diazonium-based chemistry to tether 

fluorescent proteins59,60 to the MoS2 surface. We first grafted carboxylic acid groups to the MoS2 surface by 

functionalizing it with 4-carboxybenzenediazonium (4-CBD) tetrafluorobate (the UV-vis spectrum of bulk 

MoS2 functionalized by 4-CBD is shown in the Supporting Information, Figure S21). The 4-CBD 

functionalized MoS2 was then subsequently reacted to allow tethering of poly-histidine (His)-tagged green 

fluorescent protein (GFP) and the red fluorescent protein, mCherry (see Methods for protein synthesis and 

attachment details). The chemical attachment is schematically illustrated in Figure 6a. We used 

mechanically exfoliated MoS2, as shown in the optical microscope image of Figure 6b. AFM imaging of the 

pristine MoS2 shows smooth atomic steps (Figure 6c). After protein attachment, AFM imaging (Figure 6d) 

shows a uniform increase in thickness (Figure 6e) that we interpret as a layer of proteins attached via the Ni-

chelating linkage shown in the schematic, along with some pinholes consistent with those observed for 4-

NBD attachment in Figure 3. 
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Figure 6: Attachment of active proteins to MoS2. (a) Schematic of NTA-Ni-chelation attachment of poly-histidine (His) tagged 
protein, linked to MoS2 surface via diazonium functionalization chemistry. The diazonium salt used here was 4-carboxybenzene 
diazonium (4-CBD) tetrafluoroborate. (b) Optical microscope image of mechanically exfoliated MoS2 flakes featured in panels (c) 
and (d). (c) AFM image of pristine MoS2 in the region indicated by the dashed square in panel (b). (d) AFM image in the same region 
as panel (c) after attachment of mCherry (red fluorescent protein) following initial 10 min functionalization with 4-CBD. (e) Height 
profiles along lines A and B in panels (c) and (d). (f-h) Bright field (BF), confocal fluorescence microscopy images in GFP (green) 
and mCherry (red) channels, and fluorescence images overlaid onto BF images, after protein attachment process. (f) GFP attachment. 
(g) mCherry attachment. (h) 1:1 mixture of GFP and mCherry attachment. In panels (f-h), fluorescence is only observed at the 
locations of the MoS2 flakes where the initial diazonium functionalization has formed the anchors for the attachment chemistry as 
illustrated in the schematic. 

To confirm attachment of active, viable proteins, we used confocal fluorescence microscopy to 

image the samples. Figures 6f-g show bright field optical images along with fluorescence images in the 

green and red channels for GFP and mCherry emission, respectively. These images indicate that the proteins 

have been successfully attached to the MoS2 regions where the initial diazonium functionalization took place, 

and not in regions of the bare SiO2/Si substrates. Furthermore, the strong fluorescence signals that we detect 

from the proteins demonstrate that our attachment chemistry is sufficiently gentle to avoid protein 
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denaturation. Figure 6h shows the result of attaching a 1:1 mixture of GFP and mCherry. The overlay of 

both red and green channels on the bright field image, resulting in a combined yellow appearance, shows that 

both proteins have been uniformly localized to the MoS2 flakes. Additional AFM and confocal images of 

more protein-functionalized samples are shown in the Supporting Information, Figure S20. We also note that 

in the samples shown in both Figure 6 and Figure S20 that the thicker regions of the MoS2 flakes show 

brighter fluorescence, which we interpret to mean that a higher concentration of initial diazonium attachment 

sites results in a higher concentration of fluorescent proteins, consistent with the denser grafting of groups 

shown in AFM images in Figures 3 and S13, and DFT calculations in Figure 2. In a control experiment 

where the diazonium functionalization step is skipped but all other processing steps are kept the same, no 

fluorescence is detected. Thus the covalent 4-CBD attachment step is crucial, and any possible association of 

the Ni2+ ions to the MoS2 surface such as via coordination chemistry34 is not sufficient to tether the proteins. 

 

Discussion of reaction mechanism and coverage levels 

 

The diazonium reaction mechanism for MoS2 differs from the mechanism for functionalization of 

other materials. The process of covalent functionalization with aryl diazonium salts in general relies on the 

transfer of an electron from the substrate to the diazonium molecule to generate a reactive radical. For 

graphene and carbon nanotubes, the electron transfer rate depends on the overlap of the substrate’s occupied 

density of states (DOS) and the molecule’s unoccupied states.60,88-90 However, in the case of MoS2, our DFT 

calculations show that the completely perfect MoS2 lattice is not reactive (see Figure S22 in the Supporting 

Information for DOS calculation), but the presence of a single sulfur vacancy will make the surrounding area 

reactive for covalent functionalization, which in turn generates another region of increased reactivity so that 

that subsequent molecules can react adjacent to existing ones. Thus, a single vacancy defect can allow the 

entire surface of otherwise perfect MoS2 to be covalently functionalized, with the reaction spreading in a 

chain-like configuration. This type of cooperative effect, where molecules strengthen their covalent 

interactions with another molecule or surface when other molecules bind, has been observed for many 

biopolymers such as proteins and nucleic acids,91-93 but no reports on such mechanisms have been addressed 

so far on the functionalization of the basal plane of TMDCs by simple diazonium molecules. We have also 

shown that adding a small concentration of vacancies by Ar plasma treatment increases the spread and 

density of the reacted groups by providing more initial sites of reaction. 

We also observed in experiments and DFT calculations differences in the reactivity of MoS2 as a 

function of layer number. Although layer number dependent reactivities have been reported in graphene, the 

behavior that we observed with MoS2 was opposite that of graphene. For graphene, monolayer samples are 

much more reactive than bilayer and multilayer graphene:89,94 charged impurities in the substrate induce 
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small, locally n-doped regions that provide the necessary charge for the electron transfer step, but are 

screened by the first layer of graphene in bilayer and multilayer samples.60 In contrast, bilayer and multilayer 

MoS2 appears to be more reactive than monolayer MoS2, with a higher density of attached groups observed 

by AFM (Figure 3) and a brighter fluorescence after protein attachment (Figure 6). In the case of MoS2, our 

DFT calculations show that the presence of surface defects induces an increased surface dipole moment that 

contributes to increasing reactivity by layer number. Other reports have shown that both mechanically 

exfoliated and CVD-grown material is typically n-type because of sulfur vacancies,69,95 and the DOS of the 

multilayer is three times higher than that of the monolayer, also contributing to the increased reactivity of 

multilayer MoS2.11 

The coverage of covalently functionalized sites was calculated from the TGA mass loss in Figure 5 

to be ~12%, which aligns with our DFT calculations for an optimal coverage of ~8-12%. For graphene, it has 

been estimated via first principles calculations that the maximum packing density of aryl groups on the 

surface is ~11% due to steric hindrance.96 This value is very similar to our estimate based on TGA data, as 

well as that of Knirsch et al.31 for functionalized 1T-MoS2. In the AFM images of molecular coverage 

(Figure 2), each protrusion may represent more than one aryl group, and may be broadened due to the 

curvature of the AFM tip. Thus, the dense appearance of molecular groups at longer reaction times in AFM 

images is not directly related to the quantitative estimate of the density of C–S bonds. There may also be the 

formation of oligomers,62 where the aryl radical attaches to an existing bound group rather than a bare MoS2 

site, which was discussed above in relation to the XPS data. 

 

Conclusion 

 

In summary, we have demonstrated the direct covalent functionalization of the basal planes of 

pristine semiconducting 2H-MoS2 using aryl diazonium salts without the use of any pre-treatments. The 

functionalization occurs in mild conditions, is very versatile, and can be applied effectively to MoS2 obtained 

from different methods including mechanically exfoliated flakes, CVD-grown films, and solution phase 

dispersions that can be prepared in bulk quantities. Detailed DFT calculations reveal the reaction mechanism, 

dependence on layer number, and the origins of the observed chain-like growth mode, which relies on a 

novel cooperative surface reaction mechanism. The formation of covalent bonds is confirmed by XPS and 

FTIR, and surface coverage of bound groups is estimated by AFM and TGA. The resulting functionalized 

MoS2 remains in its semiconducting 2H form, exhibiting a strong PL signal that reveals evidence of 

increased n-doping with higher levels of functionalization, providing a straightforward chemical route to 

engineering the Fermi level of the two-dimensional semiconductor. Furthermore, this aryl diazonium 

covalent chemistry is stable and robust, and we have extended it toward the tethering of active proteins, an 
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enabling step for future biosensing applications. Our studies establish important fundamental findings in the 

chemistry of TMDCs, demonstrating that lithium-based phase conversions or aggressive chemistries with 

toxic metal chlorides are in fact not necessary for robust covalent functionalization, and that the maximum 

concentration of functionalized sites is not limited by the initial concentration of defect sites. These results 

also have important implications for using chemical functionalization to engineer the electronic and chemical 

properties of TMDCs. They provide a versatile platform for covalent chemical modification of MoS2 using a 

diverse range diazonium salts and facilitate new methods of interfacing semiconducting MoS2 with 

biomolecules for biological applications. There is tremendous potential for the broader chemical 

functionalization of TMDCs of other compositions based on these results. 
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