5 research outputs found

    A homogenous microstructural Mg-based matrix model for orthopedic application with generating uniform and smooth corrosion product layer in Ringer's solution: Study on biodegradable behavior of Mg-Zn alloys prepared by powder metallurgy as a case

    No full text
    For high corrosion resistance and extensively modified biodegradable Mg-based alloys and composites for bone implants, a new Mg-based matrix model prepared by powder metallurgy is discussed and developed. In this research, Mg-5 wt.%Zn alloys were selected as a case. And they were impacted by hot extrusion and aging treatments to construct microstructure with different characteristics. Their self-forming corrosion product layer in Ringer's solution, biodegradable behavior and corrosion mechanism were minutely investigated by in vitro degradation, electrochemical corrosion and cytocompatibility. The results demonstrated the extruded Mg-5 wt.%Zn alloy aged for 96 h showed high corrosion resistance, good biocompatibility for L929 and excellent ability of maintaining sample integrity during the immersion. Significantly, the alloy showed fine-grain microstructure and uniform distributed hundred nano-sized second phases, which promoted the formation of the uniform and smooth corrosion product layer at the beginning of immersion. The corrosion product layer was more stable in chloride containing aqueous solution and could be directly formed and repaired quickly, which effectively protected the matrix from further corrosion. In addition, an ideal model of Mg-based matrix for bone tissue engineering was tried to presume and propose by discussing the causal relationship between microstructure and bio-corrosion process

    A Circular RNA Generated from Nebulin (NEB) Gene Splicing Promotes Skeletal Muscle Myogenesis in Cattle as Detected by a Multi‐Omics Approach

    No full text
    Abstract Cattle and the draught force provided by its skeletal muscle have been integral to agro‐ecosystems of agricultural civilization for millennia. However, relatively little is known about the cattle muscle functional genomics (including protein coding genes, non‐coding RNA, etc.). Circular RNAs (circRNAs), as a new class of non‐coding RNAs, can be effectively translated into detectable peptides, which enlightened us on the importance of circRNAs in cattle muscle physiology function. Here, RNA‐seq, Ribosome profiling (Ribo‐seq), and peptidome data are integrated from cattle skeletal muscle, and detected five encoded peptides from circRNAs. It is further identified and functionally characterize a 907‐amino acids muscle‐specific peptide that is named circNEB‐peptide because derived by the splicing of Nebulin (NEB) gene. This peptide localizes to the nucleus and cytoplasm and directly interacts with SKP1 and TPM1, key factors regulating physiological activities of myoblasts, via ubiquitination and myoblast fusion, respectively. The circNEB‐peptide is found to promote myoblasts proliferation and differentiation in vitro, and induce muscle regeneration in vivo. These findings suggest circNEB‐peptide is an important regulator of skeletal muscle regeneration and underscore the possibility that more encoding polypeptides derived by RNAs currently annotated as non‐coding exist

    The Seventh Visual Object Tracking VOT2019 Challenge Results

    No full text
    The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).Funding Agencies|Slovenian research agencySlovenian Research Agency - Slovenia [J2-8175, P2-0214, P2-0094]; Czech Science Foundation Project GACR [P103/12/G084]; MURI project - MoD/DstlMURI; EPSRCEngineering &amp; Physical Sciences Research Council (EPSRC) [EP/N019415/1]; WASP; VR (ELLIIT, LAST, and NCNN); SSF (SymbiCloud); AIT Strategic Research Programme; Faculty of Computer Science, University of Ljubljana, Slovenia</p
    corecore