80 research outputs found

    Why is son preference so persistent in East and South Asia? a cross-country study of China, India, and the Republic of Korea

    Get PDF
    Son preference has persisted in the face of sweeping economic and social changes in China, India, and the Republic of Korea. The authors attribute this to their similar family systems, which generate strong disincentives to raise daughters while valuing adult women's contributions to the household. Urbanization, female education, and employment can only slowly change these incentives without more direct efforts by the state and civil society to increase the flexibility of the kinship system such that daughters and sons can be perceived as being more equally valuable. Much can be done to this end through social movements, legislation, and the mass media.Gender and Development,Health Monitoring&Evaluation,Anthropology,Public Health Promotion,Population&Development,Adolescent Health,Anthropology,Life Sciences&Biotechnology,Health Monitoring&Evaluation,Population&Development

    Biogeochemical structure of the Laptev Sea in 2015-2020 associated with the River Lena plume

    Get PDF
    The discharge of rivers and the subsequent dispersion of their plumes play a pivotal role in the biogeochemical cycling of the Arctic Ocean. Based on the data collected during annual transects conducted in the autumn period (September-October) from 2015-2020, this study explores the effect of River Lena plume dispersion on the seasonal and interannual changes in the hydrophysical and biogeochemical structure of the southeastern Laptev Sea. The temperature-salinity relationship (T-S), Redfield ratio and multiparameter cluster analysis were used to investigate variations in the water mass structure along the transect. The results revealed that the plume’s interannual and seasonal spreading patterns play a crucial role in regulating the local physical, biogeochemical, and biological processes in the southern Laptev Sea. During September-October, the hydrochemical water mass structure along the transects shifted from highly stratified to unstratified as the plume’s mixing intensity increased. Anomalous hydrochemical distributions were observed due to coastal upwelling, which was primarily characterized by high total alkalinity and nitrate levels, and low organic phosphorus, nitrite, and ammonia levels in the seawater. Wind and cold weather conditions drive deep vertical mixing of seawater, causing the resuspension of bottom sediment and the subsequent enrichment of bottom water by nutrients. Multi-parameter cluster analysis is used to describe the details of water mass structures in the highly dynamic southern Laptev Sea, with water mass structures typically undergoing significant changes within two weeks between September and October. The migration and transformation of water masses throughout the seasons are influenced by the volume of river discharge, fall-winter cooling, and atmospheric circulation patterns. Furthermore, the general atmospheric circulation is confirmed to be the primary cause of the interannual variation in the spread of the Lena River plume over the southeast Laptev Sea.publishedVersio

    Targeted Sub-Attomole Cancer Biomarker Detection Based on Phase Singularity 2D Nanomaterial-Enhanced Plasmonic Biosensor

    Get PDF
    Detection of small cancer biomarkers with low molecular weight and a low concentration range has always been challenging yet urgent in many clinical applications such as diagnosing early-stage cancer, monitoring treatment and detecting relapse. Here, a highly enhanced plasmonic biosensor that can overcome this challenge is developed using atomically thin two-dimensional phase change nanomaterial. By precisely engineering the configuration with atomically thin materials, the phase singularity has been successfully achieved with a significantly enhanced lateral position shift effect. Based on our knowledge, it is the first experimental demonstration of a lateral position signal change > 340 μm at a sensing interface from all optical techniques. With this enhanced plasmonic effect, the detection limit has been experimentally demonstrated to be 10–15 mol L−1 for TNF-α cancer marker, which has been found in various human diseases including inflammatory diseases and different kinds of cancer. The as-reported novel integration of atomically thin Ge2Sb2Te5 with plasmonic substrate, which results in a phase singularity and thus a giant lateral position shift, enables the detection of cancer markers with low molecular weight at femtomolar level. These results will definitely hold promising potential in biomedical application and clinical diagnostics

    Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction

    Get PDF
    铂镍合金在氢析出(HER)、氧还原(ORR)等重要能量转化反应中具有优异催化性质,受到了人们广泛的关注。近日,谢兆雄教授课题组通过简单的溶剂热方法,首次合成出六方晶系的铂镍合金枝状纳米晶,其中每个枝杈结构由六个{11-20}高能晶面裸露的超薄纳米片组装而成。与面心立方晶系铂镍合金相比,亚稳态的六方晶系铂镍合金在HER反应中表现出更加优异的性质。当电流密度为10 mA·cm-2时,其过电位仅有65 mV,同时质量电流密度高达3.03 mA·µgPt-1 (-70 m V vs. RHE),是目前为止报道的HER催化剂中质量活性最高的,其突出的催化性能主要来源于晶相作用(同质异晶)及大的比表面积。该项工作为发展高催化性能的铂基合金纳米晶提供了新的研究思路。该研究是在谢兆雄教授和蒋亚琪副教授指导下,与傅钢教授共同合作完成。实验部分由博士生曹振明(第一作者)、陈巧丽、沈守宇、卢邦安,硕士生李慧齐以及博士后张嘉伟共同完成,理论计算部分由傅钢教授课题组完成。【Abstract】Crystal phase regulations may endow materials with enhanced or new functionalities. However, syntheses of noble metal-based allomorphic nanomaterials are extremely difficult, and only a few successful examples have been found. Herein, we report the discovery of hexagonal close-packed Pt–Ni alloy, despite the fact that Pt–Ni alloys are typically crystallized in face-centred cubic structures. The hexagonal close-packed Pt–Ni alloy nano-multipods are synthesized via a facile one-pot solvothermal route, where the branches of nano-multipods take the shape of excavated hexagonal prisms assembled by six nanosheets of 2.5nm thickness. The hexagonal close-packed Pt–Ni excavated nano-multipods exhibit superior catalytic property towards the hydrogen evolution reaction in alkaline electrolyte. The overpotential is only 65mV versus reversible hydrogen electrode at a current density of 10 mAcm-2 , and the mass current density reaches 3.03mA µgPt-1 at -70mV versus reversible hydrogen electrode, which outperforms currently reported catalysts to the best of our knowledge.This work was supported by the National Basic Research Program of China (Grant 2015CB932301), the National Natural Science Foundation of China (Grants 21333008, 21603178 and J1030415) and the Natural Science Foundation of Fujian Province of China (No. 2014J01058). 该研究工作得到科技部(批准号:2015CB932301)、国家自然科学基金委(批准号:21333008, 21603178 和 J1030415)和福建省自然科学基金委(No. 2014J01058)的大力资助与支持

    Biogeochemical structure of the Laptev Sea in 2015-2020 associated with the River Lena plume

    Get PDF
    The discharge of rivers and the subsequent dispersion of their plumes play a pivotal role in the biogeochemical cycling of the Arctic Ocean. Based on the data collected during annual transects conducted in the autumn period (September-October) from 2015-2020, this study explores the effect of River Lena plume dispersion on the seasonal and interannual changes in the hydrophysical and biogeochemical structure of the southeastern Laptev Sea. The temperature-salinity relationship (T-S), Redfield ratio and multiparameter cluster analysis were used to investigate variations in the water mass structure along the transect. The results revealed that the plume’s interannual and seasonal spreading patterns play a crucial role in regulating the local physical, biogeochemical, and biological processes in the southern Laptev Sea. During September-October, the hydrochemical water mass structure along the transects shifted from highly stratified to unstratified as the plume’s mixing intensity increased. Anomalous hydrochemical distributions were observed due to coastal upwelling, which was primarily characterized by high total alkalinity and nitrate levels, and low organic phosphorus, nitrite, and ammonia levels in the seawater. Wind and cold weather conditions drive deep vertical mixing of seawater, causing the resuspension of bottom sediment and the subsequent enrichment of bottom water by nutrients. Multi-parameter cluster analysis is used to describe the details of water mass structures in the highly dynamic southern Laptev Sea, with water mass structures typically undergoing significant changes within two weeks between September and October. The migration and transformation of water masses throughout the seasons are influenced by the volume of river discharge, fall-winter cooling, and atmospheric circulation patterns. Furthermore, the general atmospheric circulation is confirmed to be the primary cause of the interannual variation in the spread of the Lena River plume over the southeast Laptev Sea

    Wenchuan Earthquake Surface Fault Rupture and Disaster: A Lesson on Seismic Hazard Assessment and Mitigation

    No full text
    The Ms 8.0 Wenchuan earthquake occurred along the Longmenshan Faults in China and was a great disaster. Most of the damage and casualties during the quake were concentrated along surface rupture zones: the 240-km-long Beichuan-Yingxiu Fault and the 70-km-long Jiangyou-Guanxian Fault. Although the Longmenshan Faults are well known and studied, the surface Fault ruptures were not considered in mitigation planning, and the associated ground-motion hazard was therefore underestimated. Not considering Fault rupture and underestimating ground-motion hazard contributed to the disastrous effects of the earthquake. The lesson from the Wenchuan earthquake disaster is that the fault rupture hazard must be assessed and considered in mitigation. Furthermore, the deterministic approach is more appropriate for fault rupture hazard assessment than the probabilistic approach
    corecore