1,367 research outputs found
Mesonia sediminis sp nov., isolated from a sea cucumber culture pond
A yellow-pigmented, Gram-stain negative and facultatively anaerobic bacterium, designated MF326(T), was isolated from a sample of sediment collected from a sea cucumber culture pond in Rongcheng, China (122A degrees 14'34aEuro(3)E 36A degrees 54'36aEuro(3)N). Cells of strain MF326(T) were found to be catalase negative and oxidase positive. Optimal growth was found to occur at 30 A degrees C and pH 7.0-7.5 in the presence of 2.0-3.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MF326(T) is a member of the genus Mesonia and exhibits the high sequence similarity (94.3 %) with the type strain of Mesonia ostreae, followed by Mesonia algae (93.9 %). The dominant fatty acids of strain MF326(T) were identified as iso-C-15:0, an unidentified fatty acid with an equivalent chain-length of 13.565 and anteiso-C-15:0. The major polar lipids were found to be two unidentified lipids and phosphatidylethanolamine. The major respiratory quinone was found to be MK-6 and the genomic DNA G+C content was determined to be 40.7 mol%. On the basis of the phylogenetic analysis and differential phenotypic characteristics, it is concluded that strain MF326(T) (=KCTC 42255(T) =MCCC 1H00125(T)) should be assigned to the genus Mesonia as the type strain of a novel species, for which the name Mesonia sediminis sp. nov. is proposed.A yellow-pigmented, Gram-stain negative and facultatively anaerobic bacterium, designated MF326(T), was isolated from a sample of sediment collected from a sea cucumber culture pond in Rongcheng, China (122A degrees 14'34aEuro(3)E 36A degrees 54'36aEuro(3)N). Cells of strain MF326(T) were found to be catalase negative and oxidase positive. Optimal growth was found to occur at 30 A degrees C and pH 7.0-7.5 in the presence of 2.0-3.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MF326(T) is a member of the genus Mesonia and exhibits the high sequence similarity (94.3 %) with the type strain of Mesonia ostreae, followed by Mesonia algae (93.9 %). The dominant fatty acids of strain MF326(T) were identified as iso-C-15:0, an unidentified fatty acid with an equivalent chain-length of 13.565 and anteiso-C-15:0. The major polar lipids were found to be two unidentified lipids and phosphatidylethanolamine. The major respiratory quinone was found to be MK-6 and the genomic DNA G+C content was determined to be 40.7 mol%. On the basis of the phylogenetic analysis and differential phenotypic characteristics, it is concluded that strain MF326(T) (=KCTC 42255(T) =MCCC 1H00125(T)) should be assigned to the genus Mesonia as the type strain of a novel species, for which the name Mesonia sediminis sp. nov. is proposed
Anti-fouling graphene-based membranes for effective water desalination
Β© 2018 The Author(s). The inability of membranes to handle a wide spectrum of pollutants is an important unsolved problem for water treatment. Here we demonstrate water desalination via a membrane distillation process using a graphene membrane where water permeation is enabled by nanochannels of multilayer, mismatched, partially overlapping graphene grains. Graphene films derived from renewable oil exhibit significantly superior retention of water vapour flux and salt rejection rates, and a superior antifouling capability under a mixture of saline water containing contaminants such as oils and surfactants, compared to commercial distillation membranes. Moreover, real-world applicability of our membrane is demonstrated by processing sea water from Sydney Harbour over 72 h with macroscale membrane size of 4 cm 2 , processing ~0.5 L per day. Numerical simulations show that the channels between the mismatched grains serve as an effective water permeation route. Our research will pave the way for large-scale graphene-based antifouling membranes for diverse water treatment applications
Differential Regulation and Recovery of Intracellular Ca2+ in Cerebral and Small Mesenteric Arterial Smooth Muscle Cells of Simulated Microgravity Rat
BACKGROUND: The differential adaptations of cerebrovasculature and small mesenteric arteries could be one of critical factors in postspaceflight orthostatic intolerance, but the cellular mechanisms remain unknown. We hypothesize that there is a differential regulation of intracellular Ca(2+) determined by the alterations in the functions of plasma membrane Ca(L) channels and ryanodine-sensitive Ca(2+) releases from sarcoplasmic reticulum (SR) in cerebral and small mesenteric vascular smooth muscle cells (VSMCs) of simulated microgravity rats, respectively. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley rats were subjected to 28-day hindlimb unweighting to simulate microgravity. In addition, tail-suspended rats were submitted to a recovery period of 3 or 7 days after removal of suspension. The function of Ca(L) channels was evaluated by patch clamp and Western blotting. The function of ryanodine-sensitive Ca(2+) releases in response to caffeine were assessed by a laser confocal microscope. Our results indicated that simulated microgravity increased the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in cerebral VSMCs, whereas, simulated microgravity decreased the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in small mesenteric VSMCs. In addition, 3- or 7-day recovery after removal of suspension could restore the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases to their control levels in cerebral and small mesenteric VSMCs, respectively. CONCLUSIONS: The differential regulation of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in cerebral and small mesenteric VSMCs may be responsible for the differential regulation of intracellular Ca(2+), which leads to the altered autoregulation of cerebral vasculature and the inability to adequately elevate peripheral vascular resistance in postspaceflight orthostatic intolerance
Identification and Characterization of MicroRNAs in Asiatic Cotton (Gossypium arboreum L.)
To date, no miRNAs have been identified in the important diploid cotton species although there are several reports on miRNAs in upland cotton. In this study, we identified 73 miRNAs, belonging to 49 families, from Asiatic cotton using a well-developed comparative genome-based homologue search. Several of the predicted miRNAs were validated using quantitative real time PCR (qRT-PCR). The length of miRNAs varied from 18 to 22 nt with an average of 20 nt. The length of miRNA precursors also varied from 46 to 684 nt with an average of 138 Β±120 nt. For a majority of Asiatic cotton miRNAs, there is only one member per family; however, multiple members were identified for miRNA 156, 414, 837, 838, 1044, 1533, 2902, 2868, 5021 and 5142 families. Nucleotides A and U were dominant, accounted for 62.95%, in the Asiatic cotton pre-miRNAs. The Asiatic cotton pre-miRNAs had high negative minimal folding free energy (MFE) and adjusted MFE (AMFE) and high MFE index (MFEI). Many miRNAs identified in Asiatic cotton suggest that miRNAs also play a similar regulatory mechanism in diploid cotton
Fiber guiding at the Dirac frequency beyond photonic bandgaps
Light trapping within waveguides is a key practice of modern optics, both scientifically and technologically. Photonic crystal fibers traditionally rely on total internal reflection (index-guiding fibers) or a photonic bandgap (photonic-bandgap fibers) to achieve field confinement. Here, we report the discovery of a new light trapping within fibers by the so-called Dirac point of photonic band structures. Our analysis reveals that the Dirac point can establish suppression of radiation losses and consequently a novel guided mode for propagation in photonic crystal fibers. What is known as the Dirac point is a conical singularity of a photonic band structure where wave motion obeys the famous Dirac equation. We find the unexpected phenomenon of wave localization at this point beyond photonic bandgaps. This guiding relies on the Dirac point rather than total internal reflection or photonic bandgaps, thus providing a sort of advancement in conceptual understanding over the traditional fiber guiding. The result presented here demonstrates the discovery of a new type of photonic crystal fibers, with unique characteristics that could lead to new applications in fiber sensors and lasers. The Dirac equation is a special symbol of relativistic quantum mechanics. Because of the similarity between band structures of a solid and a photonic crystal, the discovery of the Dirac-point-induced wave trapping in photonic crystals could provide novel insights into many relativistic quantum effects of the transport phenomena of photons, phonons, and electrons
Genome-Wide Functional Analysis of the Cotton Transcriptome by Creating an Integrated EST Database
A total of 28,432 unique contigs (25,371 in consensus contigs and 3,061 as singletons) were assembled from all 268,786 cotton ESTs currently available. Several in silico approaches [comparative genomics, Blast, Gene Ontology (GO) analysis, and pathway enrichment by Kyoto Encyclopedia of Genes and Genomes (KEGG)] were employed to investigate global functions of the cotton transcriptome. Cotton EST contigs were clustered into 5,461 groups with a maximum cluster size of 196 members. A total of 27,956 indel mutants and 149,616 single nucleotide polymorphisms (SNPs) were identified from consensus contigs. Interestingly, many contigs with significantly high frequencies of indels or SNPs encode transcription factors and protein kinases. In a comparison with six model plant species, cotton ESTs show the highest overall similarity to grape. A total of 87 cotton miRNAs were identified; 59 of these have not been reported previously from experimental or bioinformatics investigations. We also predicted 3,260 genes as miRNAs targets, which are associated with multiple biological functions, including stress response, metabolism, hormone signal transduction and fiber development. We identified 151 and 4,214 EST-simple sequence repeats (SSRs) from contigs and raw ESTs respectively. To make these data widely available, and to facilitate access to EST-related genetic information, we integrated our results into a comprehensive, fully downloadable web-based cotton EST database (www.leonxie.com)
Cyr61/CCN1 Is Regulated by Wnt/Ξ²-Catenin Signaling and Plays an Important Role in the Progression of Hepatocellular Carcinoma
Abnormal activation of the canonical Wnt signaling pathway has been implicated in carcinogenesis. Transcription of Wnt target genes is regulated by nuclear Ξ²-catenin, whose over-expression is observed in Hepatocellular Carcinoma (HCC) tissue. Cyr61, a member of the CCN complex family of multifunctional proteins, is also found over-expressed in many types of tumor and plays dramatically different roles in tumorigenesis. In this study, we investigated the relationship between Cyr61 and Ξ²-catenin in HCC. We found that while Cyr61 protein was not expressed at a detectable level in the liver tissue of healthy individuals, its expression level was elevated in the HCC and HCC adjacent tissues and was markedly increased in cancer-adjacent hepatic cirrhosis tissue. Over-expression of Cyr61 was positively correlated with increased levels of Ξ²-catenin in human HCC samples. Activation of Ξ²-catenin signaling elevated the mRNA level of Cyr61 in HepG2 cells, while inhibition of Ξ²-catenin signaling reduced both mRNA and protein levels of Cyr61. We identified two TCF4-binding elements in the promoter region of human Cyr61 gene and demonstrated that Ξ²-catenin/TCF4 complex specifically bound to the Cyr61 promoter in vivo and directly regulated its promoter activity. Furthermore, we found that over-expression of Cyr61 in HepG2 cells promoted the progression of HCC xenografts in SCID mice. These findings indicate that Cyr61 is a direct target of Ξ²-catenin signaling in HCC and may play an important role in the progression of HCC
Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay
The decay channel
is studied using a sample of events collected
by the BESIII experiment at BEPCII. A strong enhancement at threshold is
observed in the invariant mass spectrum. The enhancement can be fit
with an -wave Breit-Wigner resonance function with a resulting peak mass of
and a
narrow width that is at the 90% confidence level.
These results are consistent with published BESII results. These mass and width
values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics
- β¦