79 research outputs found

    Are men dominant? Evidence of differences between physical activity and quality of life among older adults in China

    Get PDF
    At present, the aging population is one of China's basic national concerns, and physical exercise offers endless potential to cope with it. However, the life expectancy of men in China is generally lower than that of women, and the health status of older men is more worrying. Could it be that differences in physical exercise cause the difference in life expectancy between older men and women? This study analyzes the exercise regimen of older men and women and its influence on their quality of life. Approximately 200 respondents aged over 60 were investigated using the SF-36 and exercise questionnaires. Our findings revealed the following: (1) The scores of seven dimensions of life quality of older men were significantly lower than those of older women (p < 0.001), but there was no significant difference only in physiological function (p > 0.05); (2) The exercise frequency and persistence of older men were significantly lower than those of older women (p < 0.001), but there was no significant difference in exercise time (p > 0.05); and (3) All eight indices of quality of life of older men were positively correlated with the four indices of exercise (0.250 < R < 0.597). Our study offered the following conclusions: (1) The health of older men who lack physical exercise is poor. From the perspective of healthy aging, older men are a vulnerable group that deserves more attention. (2) Within an appropriate range, the more older men participate in physical activity programs, the more conducive they are to improved health. (3) This study focuses on promoting physical exercise for older adults and suggests organizing them to participate in sports activities as an important measure to promote healthy aging in China

    Surface skyrmions and dual topological Hall effect in antiferromagnetic topological insulator EuCd2_2As2_2

    Full text link
    In this work, we synthesized single crystal of EuCd2_2As2_2, which exhibits A-type antiferromagnetic (AFM) order with in-plane spin orientation below TNT_N = 9.5~K.Optical spectroscopy and transport measurements suggest its topological insulator (TI) nature with an insulating gap around 0.1eV. Remarkably, a dual topological Hall resistivity that exhibits same magnitude but opposite signs in the positive to negative and negative to positive magnetic field hysteresis branches emerges below 20~K. With magnetic force microscopy (MFM) images and numerical simulations, we attribute the dual topological Hall effect to the N\'{e}el-type skyrmions stabilized by the interactions between topological surface states and magnetism, and the sign reversal in different hysteresis branches indicates potential coexistence of skyrmions and antiskyrmions. Our work uncovers a unique two-dimensional (2D) magnetism on the surface of intrinsic AFM TI, providing a promising platform for novel topological quantum states and AFM spintronic applications.Comment: 7 pages, 3 figure

    Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2.

    Get PDF
    Hepatocellular carcinoma (HCC) has emerged as one of the most common malignancies worldwide. It is associated with a high mortality rate, as evident from its increasing incidence and extremely poor prognosis. The deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) has been reported to act as an oncogene in several human cancers. The present study aimed to reveal the functional significance of PSMD14 in HCC progression and the underlying mechanisms. We found that PSMD14 was significantly upregulated in HCC tissues. Overexpression of PSMD14 correlated with vascular invasion, tumor number, tumor recurrence, and poor tumor-free and overall survival of patients with HCC. Knockdown and overexpression experiments demonstrated that PSMD14 promoted proliferation, migration, and invasion in HCC cells in vitro, and facilitated tumor growth and metastasis in vivo. Mechanistically, we identified PSMD14 as a novel post-translational regulator of GRB2. PSMD14 inhibits degradation of GRB2 via deubiquitinating this oncoprotein in HCC cells. Furthermore, pharmacological inhibition of PSMD14 with O-phenanthroline (OPA) suppressed the malignant behavior of HCC cells in vitro and in vivo. In conclusion, our findings suggest that PSMD14 could serve as a novel promising therapeutic candidate for HCC

    Deubiquitinase PSMD14 enhances hepatocellular carcinoma growth and metastasis by stabilizing GRB2

    Get PDF
    Abstract(#br)Hepatocellular carcinoma (HCC) has emerged as one of the most common malignancies worldwide. It is associated with a high mortality rate, as evident from its increasing incidence and extremely poor prognosis. The deubiquitinating enzyme 26S proteasome non-ATPase regulatory subunit 14 (PSMD14) has been reported to act as an oncogene in several human cancers. The present study aimed to reveal the functional significance of PSMD14 in HCC progression and the underlying mechanisms. We found that PSMD14 was significantly upregulated in HCC tissues. Overexpression of PSMD14 correlated with vascular invasion, tumor number, tumor recurrence, and poor tumor-free and overall survival of patients with HCC. Knockdown and overexpression experiments demonstrated that PSMD14 promoted proliferation, migration, and invasion in HCC cells in vitro , and facilitated tumor growth and metastasis in vivo . Mechanistically, we identified PSMD14 as a novel post-translational regulator of GRB2. PSMD14 inhibits degradation of GRB2 via deubiquitinating this oncoprotein in HCC cells. Furthermore, pharmacological inhibition of PSMD14 with O-phenanthroline (OPA) suppressed the malignant behavior of HCC cells in vitro and in vivo . In conclusion, our findings suggest that PSMD14 could serve as a novel promising therapeutic candidate for HCC

    Effect of Inclined Orifice in Air Impingement Freezer on Heat Transfer Characteristics of Steel Strip Surface

    No full text
    In order to improve the heat transfer characteristics of the air impingement freezer, an impingement freezer experimental table was designed as the research object in this paper. Numerical simulation technology was used to simulate the impingement freezer experimental table on the basis of test verification. When the other structural parameters in the impingement freezer experimental table were constant, the effect of the inclination angle of the orifice plate (θ = 60°, 65°, 70°, 75°, 80°, 85°, and 90°) on the heat transfer characteristics of a steel strip surface was analyzed by two aspects, the average Nusselt number and the heat transfer uniformity. The results showed that with the increase in the inclination angle of the orifice plate (60° ≤ θ ≤ 90°), the average Nusselt number of the steel strip surface was increased by 19.39%, and the heat transfer uniformity index was decreased by 33.69%. When θ = 90°, the average Nusselt number on steel strip was the maximum, which was 263.68, and the heat transfer uniformity index was the minimum, which was 0.2039. Therefore, the heat transfer intensity and heat transfer uniformity in the air impingement freezer could be improved when the inclination angle of the orifice plates was 90°. This helps to improve the output of the air impingement freezer, reduce energy consumption, and improve the quality of frozen food

    Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy

    No full text
    With the development of photodynamic therapy (PDT), remarkable studies have been conducted to generate photosensitisers (PSs), especially porphyrin PSs. A variety of chemical modifications of the porphyrin skeleton have been introduced to improve cellular delivery, stability, and selectivity for cancerous tissues. This review aims to highlight the developments in porphyrin-based structural modifications, with a specific emphasis on the role of PDT in anticancer treatment and the design of PSs to achieve a synergistic effect on multiple targets

    Adaptive Robust Fault-Tolerant Synchronization Control for a Dual Redundant Hydraulic Actuation System with Common-Mode Fault

    No full text
    This paper investigates the fault-tolerant synchronization control (FTSC) problem for a dual redundant hydraulic actuation system (DRHAS), which works on active/active (A/A) mode and suffers from a kind of common-mode fault (CMF), i.e., internal leakage faults occurring in both hydraulic actuator (HA) channels simultaneously due to a common cause. Firstly, in order to follow the position command and synchronize the force outputs of the two channels, a desired trajectory generator derived from the dynamics of the control surface is employed. Then, considering model uncertainties and nonlinear dynamics of the plant, an FTSC controller is designed based on adaptive robust control (ARC) theory and backstepping technology. The controller parameters, closely related to the fault parameters, are updated online to make the controller adapt to the fault condition only when the system performance degradation exceeds a prescribed tolerable level. It has been verified that the proposed FTSC scheme can guarantee the bounded stability of output tracking error system under common-mode fault. Finally, simulation results under two scenarios demonstrate the effectiveness of the proposed FTSC scheme

    Organic photodynamic nanoinhibitor for synergistic cancer therapy

    No full text
    Despite its great potential in cancer treatment, photodynamic therapy (PDT) often exacerbates hypoxia and subsequently compromises its therapeutic efficacy. To overcome this issue, an organic photodynamic nanoinhibitor (OPNi) has been synthesized that has the additional ability to counteract carbonic anhydrase IX (CA‐IX), a molecular target in the hypoxia‐mediated signalling cascade. OPNi is composed of a metabolizable semiconducting polymer as the photosensitizer and a CA‐IX antagonist conjugated amphiphilic polymer as the matrix. This molecular structure allows OPNi not only to selectively bind CA‐IX positive cancer cells to facilitate its tumor accumulation but also to regulate the CA‐IX‐related pathway. The integration of CA‐IX inhibition into the targeted PDT process eventually has a synergistic effect, leading to superior antitumor efficacy over that of PDT alone, as well as the reduced probability of hypoxia‐induced cancer metastasis. This study thus proposes a molecular strategy to devise simple yet amplified photosensitizers to conquer the pitfalls of traditional PDT.Ministry of Education (MOE)Nanyang Technological UniversityAccepted versionThis work was supported by Nanyang Technological University (NTU-SUG:M4081627) and Singapore Ministry of Education Academic Research Fund Tier 1(RG133/ 15M4011559, 2017-T1-002-134-RG147/17) and Tier 2 (MOE2016-T2-1-098
    corecore