Surface skyrmions and dual topological Hall effect in antiferromagnetic topological insulator EuCd2_2As2_2

Abstract

In this work, we synthesized single crystal of EuCd2_2As2_2, which exhibits A-type antiferromagnetic (AFM) order with in-plane spin orientation below TNT_N = 9.5~K.Optical spectroscopy and transport measurements suggest its topological insulator (TI) nature with an insulating gap around 0.1eV. Remarkably, a dual topological Hall resistivity that exhibits same magnitude but opposite signs in the positive to negative and negative to positive magnetic field hysteresis branches emerges below 20~K. With magnetic force microscopy (MFM) images and numerical simulations, we attribute the dual topological Hall effect to the N\'{e}el-type skyrmions stabilized by the interactions between topological surface states and magnetism, and the sign reversal in different hysteresis branches indicates potential coexistence of skyrmions and antiskyrmions. Our work uncovers a unique two-dimensional (2D) magnetism on the surface of intrinsic AFM TI, providing a promising platform for novel topological quantum states and AFM spintronic applications.Comment: 7 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions