475 research outputs found

    Influenza A virus infection in dogs: Epizootiology, evolution and prevention — A review

    Get PDF
    Canine influenza virus (CIV) is an enveloped virus belonging to the genus Influenza virus A within the family Orthomyxoviridae. Prior to 2004, only sporadic outbreaks of canine influenza had been observed in dog populations around the world. However, in 2004 an H3N8 influenza virus of equine origin caused severe respiratory disease in racing greyhounds in Florida; subsequently, cases of dogs affected with various subtypes of CIV have been reported in many countries. Here, we performed a structured review of CIV, including its emergence, evolution and epizootiology. Although CIV causes a disease of low mortality, the potential public health threat it poses due to close contact between dogs and humans highlights the necessity of promoting surveillance for this virus

    Simulation of the Signal Propagation for Thin-gap RPC in the ATLAS Phase-II Upgrade

    Full text link
    Thin-gap Resistive Plate Chambers (RPCs) with a 1 mm gap size are introduced in the Phase-II ATLAS upgrade. Smaller avalanche charge due to the reduced gap size raises concerns for signal integrity. This work focuses on the RPC signal propagation process in lossless conditions, and an analytical study is implemented for the ATLAS RPC. Detector modeling is presented, and the simulation of the RPC signal is discussed in detail. Simulated characteristic impedance and crosstalk have been compared with the measured value to validate this model. This method is applied to different RPC design geometries, including the newly proposed η−η\eta-\eta readout scheme.Comment: 6 pages, 5 figures, submitted to NIM

    Design of an omnidirectional single-point photodetector for large-scale spatial coordinate measurement

    Get PDF
    In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is to utilize the spatial trigonometric relationships between multiple laser transmitting stations and the target point. A light receiving device at target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly-sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is highly desired. Here we report one design of OSPD using aspheric lens, which achieves enhanced reception angle of -5 to 45 degree in vertical and 360 degree in horizontal. As the heart of our OSPD, the aspheric lens is designed in geometric model and optimized by LightTools Software, which enables reflecting wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 m to 13 m and further analyzed utilizing established geometric model. The experimental and analytic results verify that our new device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, optical wireless communication systems

    A cuproptosis-related lncRNA signature-based prognostic model featuring on metastasis and drug selection strategy for patients with lung adenocarcinoma

    Get PDF
    Introduction: Lung adenocarcinoma is a common cause of mortality in patients with cancer. Recent studies have indicated that copper-related cell death may not occur in the same way as previously described. Long non-coding RNAs (lncRNAs) play a key role in the occurrence and development of tumors; however, the relationship between cuproptosis and lncRNAs in tumorigenesis and lung adenocarcinoma (LUAD) treatment has not been well established. Our study aimed to construct a model to analyze the prognosis of lung adenocarcinoma in patients using a carcinogenesis-related lncRNA (CR) signature.Methods: The transcriptional profiles of 507 samples from The Cancer Genome Atlas were assessed. Cox regression and co-expression analyses, and the least absolute shrinkage and selection operator (LASSO) were used to filter the CR and develop the model. The expression status of the six prognostic CRs was used to classify all samples into high- and low-risk groups. The overall disease-free survival rate was compared between the two groups. The Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used to identify the pathways and mechanisms involved in this model. Subsequently, immunotherapy response, sensitivity, and correlation analyses for several anti-tumor medications were performed. In vitro experiments, including qPCR, were conducted in nine lung adenocarcinoma cell lines and 16 pairs of lung adenocarcinoma and para-carcinoma tissues.Results: After confirmation using the ROC curve, patients in the low-risk category benefited from both overall and disease-free survival. Gene Ontology analysis highlighted cell movement in the model. In the in vitro experiments, qPCR results showed the expression levels of six CRs in 16 pairs of carcinoma and para-carcinoma tissues, which were in accordance with the results of the model. AL138778.1 is a protective factor that can weaken the invasion and migration of A549 cells, and AL360270.1 is a hazardous factor that promotes the invasion and migration of A549 cells. According to this model, targeted treatments such as axitinib, gefitinib, linsitinib, pazopanib, and sorafenib may be more appropriate for low-risk patients.Conclusion: Six CR profiles (AL360270.1, AL138778.1, CDKN2A-DT, AP003778.1, LINC02718, and AC034102.8) with predictive values may be used to evaluate the prognosis of patients with lung adenocarcinoma undergoing therapy

    Interpolatory Catmull-Clark volumetric subdivision over unstructured hexahedral meshes for modeling and simulation applications

    Get PDF
    International audienceVolumetric modeling is an important topic for material modeling and isogeometric simulation. In this paper, two kinds of interpolatory Catmull-Clark volumetric subdivision approaches over unstructured hexahedral meshes are proposed based on the limit point formula of Catmull-Clark subdivision volume. The basic idea of the first method is to construct a new control lattice, whose limit volume by the CatmullClark subdivision scheme interpolates vertices of the original hexahedral mesh. The new control lattice is derived by the local push-back operation from one CatmullClark subdivision step with modified geometric rules. This interpolating method is simple and efficient, and several shape parameters are involved in adjusting the shape of the limit volume. The second method is based on progressive-iterative approximation using limit point formula. At each iteration step, we progressively modify vertices of an original hexahedral mesh to generate a new control lattice whose limit volume interpolates all vertices in the original hexahedral mesh. The convergence proof of the iterative process is also given. The interpolatory subdivision volume has C 2-smoothness at the regular region except around extraordinary vertices and edges. Furthermore, the proposed interpolatory volumetric subdivision methods can be used not only for geometry interpolation, but also for material attribute interpolation in the field of volumetric material modeling. The application of the proposed volumetric subdivision approaches on isogeometric analysis is also given with several examples

    Resveratrol Ameliorates Glucocorticoid-Induced Bone Damage in a Zebrafish Model

    Get PDF
    Resveratrol (Res) is a multi-functional polyphenol compound that has protective functions in cardiovascular and neurodegenerative diseases. This study aimed to determine the effect of Res on osteogenic differentiation and bone mineralization in zebrafish (Danio rerio) with dexamethasone (Dex)-induced bone damage. Our results showed that Dex exposure (15 μmol/l) decreased the green fluorescence areas and the integrated optic density (IOD) values in the skull bones of zebrafish larvae of the TG(SP7:EGFP) strain in a dose-dependent manner (p < 0.01). Furthermore, Dex exposure decreased the alizarin red S-stained areas (bone mineralization area) in the skeleton and spinal bones of zebrafish larvae of the AB strain in a dose-dependent manner (p < 0.01). By contrast, Res treatment (150 μmol/l) significantly increased both the green fluorescence and bone mineralization area in Dex-exposed zebrafish larvae. Thus, our data show that Res improves bone mineralization after glucocorticoid-induced bone damage in a zebrafish model. Res may be a candidate drug for the prevention of osteoporosis

    Interface induced Zeeman-protected superconductivity in ultrathin crystalline lead films

    Full text link
    Two dimensional (2D) superconducting systems are of great importance to exploring exotic quantum physics. Recent development of fabrication techniques stimulates the studies of high quality single crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity) in 4 monolayer (ML) to 6 ML crystalline Pb films grown on striped incommensurate (SIC) Pb layers on Si(111) substrates by molecular beam epitaxy (MBE). Anomalous large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that in superconducting heterostructures the interface can induce Zeeman-type spin-orbit interaction (SOI) and modulate the superconductivity

    Surface skyrmions and dual topological Hall effect in antiferromagnetic topological insulator EuCd2_2As2_2

    Full text link
    In this work, we synthesized single crystal of EuCd2_2As2_2, which exhibits A-type antiferromagnetic (AFM) order with in-plane spin orientation below TNT_N = 9.5~K.Optical spectroscopy and transport measurements suggest its topological insulator (TI) nature with an insulating gap around 0.1eV. Remarkably, a dual topological Hall resistivity that exhibits same magnitude but opposite signs in the positive to negative and negative to positive magnetic field hysteresis branches emerges below 20~K. With magnetic force microscopy (MFM) images and numerical simulations, we attribute the dual topological Hall effect to the N\'{e}el-type skyrmions stabilized by the interactions between topological surface states and magnetism, and the sign reversal in different hysteresis branches indicates potential coexistence of skyrmions and antiskyrmions. Our work uncovers a unique two-dimensional (2D) magnetism on the surface of intrinsic AFM TI, providing a promising platform for novel topological quantum states and AFM spintronic applications.Comment: 7 pages, 3 figure
    • …
    corecore