9 research outputs found

    Antiviral activity of porcine interferon omega 7 against foot‐and‐mouth disease virus in vitro

    Full text link
    Foot-and-mouth disease (FMD) is a disease of worldwide economic importance, and vaccines play an important role in preventing FMDV outbreaks. However, new control strategies are still needed since FMDV outbreaks still occur in some disease-free countries. Currently, interferon (IFN)-based strategies have been demonstrated to be an efficient biotherapeutic option against FMDV; however, interferon omega (IFN-ω) has not yet been assessed in this capacity. Thus, this study evaluated the antiviral activity of porcine IFN omega 7 (PoIFN-ω7) against FMDV. After the PoIFN-ω7 was expressed and purified, cell proliferation assays and quantitative real-time reverse transciption-polymerase chain reaction were used to evaluate the effective anti-cytopathic concentration of PoIFN-ω7 and its effectiveness pre- and post-infection with FMDV in swine kidney cells (IBRS-2). Results showed the rHis-PoIFN-ω7 fusion protein was considerably expressed using Escherichia coli BL21 (DE3) strain, and the recombinant protein exhibited significant in vitro protection against FMDV, including two strains belonging to type O and A FMDV, respectively. In addition, PoIFN-ω7 upregulated the transcription of Mx1, ISG15, OAS1, and PKR genes. These findings indicated that IFN-ω has the potential for serving as a useful therapeutic agent to prevent FMDV or other viral outbreaks in pigs

    A novel type I interferon, interferon alphaomega, shows antiviral activity against foot-and-mouth disease virus in vitro.

    Full text link
    Recently, a novel type I interferon alphaomega (IFN-αω), also known as IFN-μ, was identified. However, the biological activity of IFN-αω remain poorly understood. In this study, the porcine IFN-αω (PoIFN-αω) was expressed, purified, and its antiviral activities assessed by its ability to inhibit the cytopathic effect caused by FMDV on IBRS-2 cells. In addition, q-PCR was used to evaluate the expression of IFN-stimulated genes induced by PoIFN-αω. It was found that PoIFN-αω exerted effective antiviral activity against FMDV pre- and post-infection. Additionally, PoIFN-αω induced the transcription of IFN-stimulated genes, including Mx1, ISG15, OAS1, and PKR genes. Our study reported a new indication of PoIFN-αω as an effective anti-FMDV agent for the first time

    Thermal Infrared Evaluation of the Influence of Arbuscular Mycorrhizal Fungus and Dark Septate Endophytic Fungus on Maize Growth and Physiology

    No full text
    Thermal infrared imaging technology was used to understand the effects of arbuscular mycorrhizal fungi (AMF) and dark septate endophytic (DSE) fungi, both separately and together, on plant growth and physiological status, and to screen and develop efficient microbial agents in a pot experiment design. Eight treatments comprised the control (CK), AMF inoculation alone, DSE fungal treatments (DSE20%, DSE40% and DSE80%; 2, 4, 8 × 105 CFU mL−1) and combined inoculation treatments (DSE20% + AMF, DSE40% + AMF, and DSE80% + AMF). Canopy temperature (Tcanopy) and stomatal conductance (gs) were monitored at different growth stages, and plant biomass-related indicators were obtained at harvest. These indicators were used to assess plant growth and the physiological status resulting from the different inoculation treatments. During plant growth, the plant Tcanopy decreased following inoculation. Differences in Tcanopy between control and inoculated plants were detected by thermal infrared imaging technology and were −3.8 to + 9.3 °C (control–inoculation treatment). Growth index and Tcanopy monitoring indicate that the growth-promoting effect of combined inoculation was higher than that of either fungal type alone, with DSE80% + AMF producing the highest growth promotion. During the growth process of inoculated maize, the effect of inoculated AMF on the physiological condition of maize growth can be better monitored by thermal infrared at 10 a.m., 12 p.m., 2 p.m. and 4 p.m. on the 31st–57th days of the growth period. The method and results of this experiment are conducive to the rapid and efficient monitoring of the effects of microorganisms on plant growth and physiological status and can be applied to the screening, application, and promotion of microbial agents
    corecore