36 research outputs found

    Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED

    Get PDF
    Abstract(#br)This study developed a vapor chamber (VC) with radial multi-artery reentrant microchannels for thermal management of high-power light emitting diodes (LEDs). It featured Ω-shaped reentrant microchannels inside porous wicks to provide separated flow passages for vapor and liquid flow. It was integrated with a high-power LED module for fast heat dissipation and efficient thermal management. Experiments are systematically conducted to evaluate thermal performance of the VC for a wide range of input power of LEDs, air flow rates and inclination angles of LED module. The VC is compared to a copper plate heat sink in the same operation conditions. Results show that compared to the copper plate, the VC presented a faster temperature rise, and was earlier to reach equilibrium state. The VC reduced the substrate surface temperature of LED module for 7% to 27%, and introduced a reduction in the thermal resistance for 19% to 48%, indicating that the VC enhanced cooling capacity remarkably and yield a notable favorable performance for the heat dissipations of LEDs. The thermal performance of the VC was significantly dependent on the input power of LEDs and air flow rates, whereas the inclination angle of LED module showed negligible effects on thermal performance

    A critical review on production, modification and utilization of biochar

    Get PDF
    There has been an increased interest in the production of sustainable biochar in the past years, as biochar shows versatile physicochemical properties and, can have a wide applicability in diverse fields. Comprehensive studies have been made to characterize biochar produced from various biomass materials, using different production technologies and under different process conditions. However, research is still lacking in correlating biochar properties needed for certain applications with (i) feedstock, (ii) biochar production processes and conditions and (iii) biochar upgrading and modification strategies. To produce biochar with desired properties, there is a great need to establish and clarify such correlations, which can guide the selection of feedstock, tuning and optimization of the production process and more efficient utilization of biochar. On the other hand, further elucidation of these correlations is also important for biochar-stakeholder and end-users for predicting physiochemical properties of biochar from certain feedstock and production conditions, assessing potential effects of biochar utilization and clearly address needs towards biochar critical properties. This review summarizes a wide range of literature on the impact of feedstocks and production processes and reactions conditions on the biochar properties and the most important biochar properties required for the different potential applications. Based on collected data, recommendations are provided for mapping out biochar production for different biochar applications. Knowledge gaps and perspectives for future research have also been identified regarding the characterization and production of biochar.acceptedVersio

    Genome-Wide Identification of MicroRNAs in Response to Low Nitrate Availability in Maize Leaves and Roots

    Get PDF
    BACKGROUND: Nitrate is the major source of nitrogen available for many crop plants and is often the limiting factor for plant growth and agricultural productivity especially for maize. Many studies have been done identifying the transcriptome changes under low nitrate conditions. However, the microRNAs (miRNAs) varied under nitrate limiting conditions in maize has not been reported. MiRNAs play important roles in abiotic stress responses and nutrient deprivation. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used the SmartArray™ and GeneChip® microarray systems to perform a genome-wide search to detect miRNAs responding to the chronic and transient nitrate limiting conditions in maize. Nine miRNA families (miR164, miR169, miR172, miR397, miR398, miR399, miR408, miR528, and miR827) were identified in leaves, and nine miRNA families (miR160, miR167, miR168, miR169, miR319, miR395, miR399, miR408, and miR528) identified in roots. They were verified by real time stem loop RT-PCR, and some with additional time points of nitrate limitation. The miRNAs identified showed overlapping or unique responses to chronic and transient nitrate limitation, as well as tissue specificity. The potential target genes of these miRNAs in maize were identified. The expression of some of these was examined by qRT-PCR. The potential function of these miRNAs in responding to nitrate limitation is described. CONCLUSIONS/SIGNIFICANCE: Genome-wide miRNAs responding to nitrate limiting conditions in maize leaves and roots were identified. This provides an insight into the timing and tissue specificity of the transcriptional regulation to low nitrate availability in maize. The knowledge gained will help understand the important roles miRNAs play in maize responding to a nitrogen limiting environment and eventually develop strategies for the improvement of maize genetics

    Experimental and Numerical Investigation of One-Dimensional Electroosmotic Consolidation Based on Segment Inheritance Strategy

    No full text
    The attenuation of effective potential is a significant factor leading to the low postdrainage efficiency in the electroosmotic consolidation and drainage methods. In this study, the influence of the attenuation of effective potential on the electroosmotic consolidation process and the problem of solving the governing equations were investigated. A 102.5-hr one-dimensional electroosmotic consolidation test was performed to monitor the changes in the properties of the soil interior and the soil–electrode interface, and the variation curve of the effective potential in the test model was measured. The time-dependent nature of the potential distribution due to the attenuation of effective potential contradicts the assumption of introducing intermediate variables. To address this key issue, the variation curve of the effective potential was linearly segmented, ensuring the validity of introducing intermediate variables within each local state segment. Based on the continuity between state segments, the initial conditions of the governing equations in different state segments were updated, thereby extending the differential iteration within local state segments to the entire electroosmotic time domain. A finite-difference program for this method was developed using the Python language. Calculations and analyses based on the measured potential data were performed, revealing that a decrease in potential leads to a reduction in the effectiveness of electroosmotic drainage and consolidation in terms of the instantaneous distribution of pore pressure and the overall average degree of consolidation. This method can reflect the influence of the attenuation of effective potential on the pore water pressure during the electroosmotic consolidation process. The research findings of this paper can provide theoretical and numerical support for the improvement and engineering application of the electroosmotic consolidation and drainage method

    Temporal Activity Patterns of Sympatric Species in the Temperate Coniferous Forests of the Eastern Qinghai-Tibet Plateau

    No full text
    Temporal niche partitioning is an important strategy for sympatric species or populations when utilizing limited resources while minimizing competition. Different resource availability across seasons may also influence the intensity of competition, resulting in a varied temporal niche partitioning pattern between species. These competitive interactions are important drivers for the formation of biodiversity patterns and species coexistence on the eastern Qinghai-Tibet Plateau. To clarify these interspecies relationships among sympatric species, we carried out a camera trap survey from 2017 to 2020. We deployed 60 camera traps in the temperate coniferous forests of the eastern Qinghai-Tibet Plateau. We analyzed the daily activity patterns of birds and mammals to reveal the temporal niches and seasonal relationships among the species-specific activity rhythms. The results are summarized as follows: (1) Eight major species, including mammals and birds, have different temporal peak activity rhythms to reduce intense competition for resources. (2) The activity rhythm of a species varies seasonally, and the competition among species is more intense in the warm season than in the cold season. (3) Among 15 pairs of competitor species, seven pairs had significantly different coefficients, with higher winter values than summer values, perhaps due to the abundance of resources in summer and the scarcity of resources in winter causing intensified competition. Among the predators and prey, the summertime coefficients were higher than those in winter, perhaps due to the need to replenish energy during the summer breeding season. The main purpose of animals in winter is to survive the harsh environment. Our results provide important information on temporal and interspecies relationships and contribute to a better understanding of species-coexistence mechanisms

    Creation of targeted inversion mutations in plants using an RNA-guided endonuclease

    Get PDF
    Inversions are DNA rearrangements that are essential for plant gene evolution and adaptation to environmental changes. We demonstrate the creation of targeted inversions and previously reported targeted deletion mutations via delivery of a pair of RNA-guided endonucleases (RGENs) of CRISPR/Cas9. The efficiencies of the targeted inversions were 2.6% and 2.2% in the Arabidopsis FLOWERING TIME (AtFT) and TERMINAL FLOWER 1 (AtTFL1) loci, respectively. Thus, we successfully established an approach that can potentially be used to introduce targeted DNA inversions of interest for functional studies and crop improvement
    corecore