11 research outputs found

    Numerical and Experimental Research of Noise Reduction due to Low Frequency Pressure Fluctuation of Rotary Compressor

    Get PDF
    In order to reduce the noise level due to the low frequency pressure fluctuation associated with a rotary compressor, the noise mechanism and noise reduction solutions were conducted by using numerical and experimental methods. A 1D simulation model was established and a sensitivity analysis was conducted for the parameters associated with the low frequency pressure fluctuation of the rotary compressor. Then, a 3D CFD simulation model corresponding to the operation procedure of the rotary compressor was established and the working process of the rotary compressor was simulated. At the same time, the low frequency pressure fluctuation and the noise spectral characteristic were measured by using a refrigerant test fixture established in this work. Based on numerical and experimental research results, several noise reduction solutions and basic methods to restrain the low frequency pressure fluctuation were proposed and verified by using experimental method. A good improvement for the noise performance due to the low frequency pressure fluctuation was obtained. The work in this paper provides a reference and a foundation for the improvement of the noise due to the low frequency pressure fluctuation associated with rotary compressors

    Analysis of High Frequency Noise of Inverter Rotary Compressor

    Get PDF
    The inverter compressor driven by the inverter will cause high frequency noise, which will have adverse influence on total noise value and sound quality. In order to improve this problem, an existing compact rotary inverter compressor is studied in this paper. The influence law of inverter carrier wave of space vector pulse width modulation(SVPWM) technique on motor vibration and noise of compressor is analyzed and summarized. Combining order analysis and motor modal analysis, the results show that the high harmonic current induced by inverter carrier wave will produce high frequency electromagnetic force which excites the stator resonance, and finally results in high frequency noise of the compressor. Through optimization of the motor structure, the high frequency noise is reduced by more than 5dB(A), the sound quality is improved as well

    Research on Low Frequency Noise Caused by Beat Vibration of Rotary Compressor

    Get PDF
    The discontinuity of low frequency noise caused by beat frequency vibration of rotary compressor is studied in this paper. Based on beat frequency theoretical analysis, a finite element model is established to simulate the electromagnetic harmonics. And the contributions of various compressor motor designs to beat frequency vibration are investigated, so the motor optimization design schemes are obtained. The tests show that the method proposed in the paper is effective to improve low frequency noise of the compressor

    The characteristics of soil salinization effects on nitrogen mineralization and nitrification in upland fields

    Get PDF
    The influence of soil salinization on nitrogen (N) transformation is largely unknown, which impedes the reasonable management of N in saline fields. A comprehensive meta-analysis was thus conducted to evaluate the effects of salinity and relative soil physicochemical properties on net N mineralization and nitrification in upland soils. Results showed that effects of salinity on the net-N mineralization rate (Min) and nitrification rate (Nit) changed with the salinity level and incubation time. Generally, the inhibitory effect of salt on Min and Nit decreased gradually with incubation time. At 14–16 days of soil incubation, significant stimulatory effects on Min were observed in middle-level (ECe: 12–16 dS m-1) and high-level (ECe >16 dS m-1) saline soils, and on Nit in low-level (ECe: 4–12 dS m-1) saline soils. Regression analysis revealed that the effects of soil organic carbon (SOC), total N (TN), C/N, pH, and clay content on Min and Nit were closely related to salinity levels. Nit at 5–7 days of soil incubation first enhanced and then decreased with C/N increase, and the threshold value was 34.7. The effect of pH on Nit changed with salinity levels, and shifted from stimulation to inhibition with increasing pH. Min at 5–7 days of soil incubation in middle-level group first increased with increasing pH, and decreased when pH was higher than 8.1. Salinization deeply affected soil properties, which further influenced N turnover via alteration of the availability of substrates and microbial biomass and activities. Our findings suggest that the influence of salinity on soil N turnover closely related with salinity level, and salinity level should be considered fully when optimizing N management in saline upland fields

    Insights Into the Bovine Milk Microbiota in Dairy Farms With Different Incidence Rates of Subclinical Mastitis

    Get PDF
    Bovine mastitis continues to be a complex disease associated with significant economic loss in dairy industries worldwide. The incidence rate of subclinical mastitis (IRSCM) can show substantial variation among different farms; however, the milk microbiota, which have a direct influence on bovine mammary gland health, have never been associated with the IRSCM. Here, we aimed to use high-throughput DNA sequencing to describe the milk microbiota from two dairy farms with different IRSCMs and to identify the predominant mastitis pathogens along with commensal or potential beneficial bacteria. Our study showed that Klebsiella, Escherichia–Shigella, and Streptococcus were the mastitis-causing pathogens in farm A (with a lower IRSCM), while Streptococcus and Corynebacterium were the mastitis-causing pathogens in farm B (with a higher IRSCM). The relative abundance of all pathogens in farm B (22.12%) was higher than that in farm A (9.82%). However, the genus Bacillus was more prevalent in farm A. These results may be helpful for explaining the lower IRSCM in farm A. Additionally, the gut-associated genera Prevotella, Ruminococcus, Bacteroides, Rikenella, and Alistipes were prevalent in all milk samples, suggesting gut bacteria can be one of the predominant microbial contamination in milk. Moreover, Listeria monocytogenes (a foodborne pathogen) was found to be prevalent in farm A, even though it had a lower IRSCM. Overall, our study showed complex diversity between the milk microbiota in dairy farms with different IRSCMs. This suggests that variation in IRSCMs may not only be determined by the heterogeneity and prevalence of mastitis-causing pathogens but also be associated with potential beneficial bacteria. In the future, milk microbiota should be considered in bovine mammary gland health management. This would be helpful for both the establishment of a targeted mastitis control system and the control of the safety and quality of dairy products

    Manipulating Selectivity of Hydroxyl Radical Generation by Single- Atom Catalysts in Catalytic Ozonation: Surface or Solution

    No full text
    Hydroxyl radical-dominated oxidation in catalytic ozonation is, in particular, important in water treatment scenarios for removing organic contaminants, but the mechanism about ozone-based radical oxidation processes is still unclear. Here, we prepared a series of transitional metal (Co, Mn, Ni) single-atom catalysts (SACs) anchored on graphitic carbon nitride to accelerate ozone decomposition and produce highly reactive center dot OH for oxidative destruction of a water pollutant, oxalic acid (OA). We experimentally observed that, depending on the metal type, OA oxidation occurred dominantly either in the bulk phase, which was the case for the Mn catalyst, or via a combination of the bulk phase and surface reaction, which was the case for the Co catalyst. We further performed density functional theory simulations and in situ X-ray absorption spectroscopy to propose that the ozone activation pathway differs depending on the oxygen binding energy of metal, primarily due to differential adsorption of O3 onto metal sites and differential coordination configuration of a key intermediate species, *OO, which is collectively responsible for the observed differences in oxidation mechanisms and kinetics

    Manipulating Selectivity of Hydroxyl Radical Generation by Single- Atom Catalysts in Catalytic Ozonation: Surface or Solution

    No full text
    Hydroxyl radical-dominated oxidation in catalytic ozonation is, in particular, important in water treatment scenarios for removing organic contaminants, but the mechanism about ozone-based radical oxidation processes is still unclear. Here, we prepared a series of transitional metal (Co, Mn, Ni) single-atom catalysts (SACs) anchored on graphitic carbon nitride to accelerate ozone decomposition and produce highly reactive center dot OH for oxidative destruction of a water pollutant, oxalic acid (OA). We experimentally observed that, depending on the metal type, OA oxidation occurred dominantly either in the bulk phase, which was the case for the Mn catalyst, or via a combination of the bulk phase and surface reaction, which was the case for the Co catalyst. We further performed density functional theory simulations and in situ X-ray absorption spectroscopy to propose that the ozone activation pathway differs depending on the oxygen binding energy of metal, primarily due to differential adsorption of O3 onto metal sites and differential coordination configuration of a key intermediate species, *OO, which is collectively responsible for the observed differences in oxidation mechanisms and kinetics

    Single-Atom Mn-N-4 Site-Catalyzed Peroxone Reaction for the Efficient Production of Hydroxyl Radicals in an Acidic Solution

    No full text
    The peroxone reaction between O-3 and H2O2 has been deemed a promising technology to resolve the increasingly serious water pollution problem by virtue of the generation of superactive hydroxyl radicals ((OH)-O-center dot), but it suffers greatly from an extremely limited reaction rate constant under acidic conditions (ca. less than 0.1 M-1 s(-1) at pH 3). This article describes a heterogeneous catalyst composed of single Mn atoms anchored on graphitic carbon nitride, which effectively overcomes such a drawback by altering the reaction pathway and thus dramatically promotes (OH)-O-center dot generation in acid solution. Combined experimental and theoretical studies demonstrate Mn-N-4 as the catalytically active sites. A distinctive catalytic pathway involving HO2 center dot formation by the activation of H2O2 is found, which gets rid of the restriction of HO2- as the essential initiator in the conventional peroxone reaction. This work offers a new pathway of using a low-cost and easily accessible single-atom catalyst (SAC) and could inspire more catalytic oxidation strategies

    Selective Exposure of Robust Perovskite Layer of Aurivillius‐Type Compounds for Stable Photocatalytic Overall Water Splitting

    No full text
    Abstract Aurivillius‐type compounds ((Bi2O2)2+(An–1BnO3n+1)2−) with alternately stacked layers of bismuth oxide (Bi2O2)2+ and perovskite (An−1BnO3n+1)2− are promising photocatalysts for overall water splitting due to their suitable band structures and adjustable layered characteristics. However, the self‐reduction of Bi3+ at the top (Bi2O2)2+ layers induced by photogenerated electrons during photocatalytic processes causes inactivation of the compounds as photocatalysts. Here, using Bi3TiNbO9 as a model photocatalyst, its surface termination is modulated by acid etching, which well suppresses the self‐corrosion phenomenon. A combination of comprehensive experimental investigations together with theoretical calculations reveals the transition of the material surface from the self‐reduction‐sensitive (Bi2O2)2+ layer to the robust (BiTiNbO7)2− perovskite layer, enabling effective electron transfer through surface trapping and effective hole transfer through surface electric field, and also efficient transfer of the electrons to the cocatalyst for greatly enhanced photocatalytic overall water splitting. Moreover, this facile modification strategy can be readily extended to other Aurivillius compounds (e.g., SrBi2Nb2O9, Bi4Ti3O12, and SrBi4Ti4O15) and therefore justify its usefulness in rationally tailoring surface structures of layered photocatalysts for high photocatalytic overall water‐splitting activity and stability
    corecore