63 research outputs found

    The rotation effect on the thermodynamics of the QCD matter

    Full text link
    In this study, we investigate the impact of rotation on the thermodynamic characteristics of QCD matter using the three-flavor NJL model. We examine the temperature, quark chemical potential, and angular velocity dependencies of key thermodynamic quantities, such as the trace anomaly, specific heat, speed of sound, angular momentum, and moment of inertia. As the main finding of our analysis, we observe that the speed of sound exhibits a nonmonotonic behavior as the angular velocity changes.Comment: 18 pages, 19 figure

    Advances in the adsorption of heavy metal ions in water by UiO-66 composites

    Get PDF
    The innovative adsorbents known as the Metal-organic Framework (MOFs) had a high specific surface area, various structural types, and good chemical stability. MOFs have been produced through hydrothermal, mechanochemical, microwave-assisted, gelation, and other synthesis methods, and the solvothermal process is one of them that researchers frequently utilize. The UiO materials have a more comprehensive application potential than different subtypes of MOFs among the numerous MOFs that have been synthesized. The synthesis of MOFs and their composites, as well as the adsorption characteristics of UiO materials in the adsorption of various heavy metal ions, have all been examined and summarized in this study

    Numbers and narratives: How qualitative methods can strengthen the science of paediatric antimicrobial stewardship

    Get PDF
    Antimicrobial and diagnostic stewardship initiatives have become increasingly important in paediatric settings. The value of qualitative approaches to conduct stewardship work in paediatric patients is being increasingly recognized. This article seeks to provide an introduction to basic elements of qualitative study designs and provide an overview of how these methods have successfully been applied to both antimicrobial and diagnostic stewardship work in paediatric patients. A multidisciplinary team of experts in paediatric infectious diseases, paediatric critical care and qualitative methods has written a perspective piece introducing readers to qualitative stewardship work in children, intended as an overview to highlight the importance of such methods and as a starting point for further work. We describe key differences between qualitative and quantitative methods, and the potential benefits of qualitative approaches. We present examples of qualitative research in five discrete topic areas of high relevance for paediatric stewardship work: provider attitudes; provider prescribing behaviours; stewardship in low-resource settings; parents\u27 perspectives on stewardship; and stewardship work focusing on select high-risk patients. Finally, we explore the opportunities for multidisciplinary academic collaboration, incorporation of innovative scientific disciplines and young investigator growth through the use of qualitative research in paediatric stewardship. Qualitative approaches can bring rich insights and critically needed new information to antimicrobial and diagnostic stewardship efforts in children. Such methods are an important tool in the armamentarium against worsening antimicrobial resistance, and a major opportunity for investigators interested in moving the needle forward for stewardship in paediatric patients

    Long-lived magmatic evolution and mineralization resulted in formation of the giant Cuonadong Sn-W-Be polymetallic deposit, southern Tibet

    Get PDF
    The Cuonadong Sn-W-Be polymetallic deposit is the first Cenozoic leucogranite-related rare-metal deposit with giant metallogenic potential in the Himalayan orogen. However, controlling factors for the supernormal enrichment of beryllium, tin and tungsten in this deposit remain vague. In this study, we carried out systematic geochronological, whole-rock geochemical, and Sr-Nd isotopic analysis for the Cuonadong leucogranites, as well as detailed ore-forming geochronological analysis. The monazite U-Th-Pb, cassiterite U-Pb and muscovite Ar-Ar dating results, together with previously reported geochronological data, indicate that the major Cuonadong leucogranites (including, from old to young, weakly-oriented two-mica, two-mica granite and muscovite) were formed during ∼21-15 Ma, whereas the Sn-W-Be mineralization mainly occurred at ∼18-14 Ma. The Cuonadong leucogranites show strong peraluminous (A/CNK=1.09-1.22) features, and have high SiO2 (71.62-75.97 wt.%) and Al2O3 (14.04-16.09 wt.%) and low MgO (0.07-0.33 wt.%), MnO (0.01-0.15 wt.%) and total Fe2O3 (0.36-1.01 wt.%) contents, and are enriched in large ion lithophile elements (e.g., Rb, U, K, and Pb). These geochemical features together with enriched Sr-Nd isotopes (εNd(t) = -15.7 to -11.7; (87Sr/86Sr)i=0.71957-0.76313) indicate that the Cuonadong leucogranites belong to S-type granite and were derived from muscovite-induced dehydration melting of metapelites of the Higher Himalayan Crystalline Sequence. Perceptible linear variations of some major elements (e.g., Na2O, K2O, MnO, Fe2O3T, TiO2 and A/CNK) with increasing Rb/Sr ratios suggest these leucogranites experienced different degrees of evolution. Quantitative simulation calculations based on the whole-rock Rb, Sr, and Ba contents imply that the Cuonadong leucogranites experienced increasingly-strong fractional crystallization of plagioclase, K-feldspar and biotite from the weakly-oriented two-mica granite to two-mica granite and muscovite granite. Importantly, intense fractional crystallization leaded to notable enrichment of Sn, W and Be, although these elements are not obviously high in the relatively primitive magma for the Cuonadong leucogranites. Significantly, evident REE tetrad effects and deviation of twin-element pair ratios (K/Rb, K/Ba, Zr/Hf, Nb/Ta, and Y/Ho) from the chondritic values demonstrate that intense interaction between melts and F-rich aqueous fluids occurred during magmatic evolution. This implies that the Cuonadong leucogranites were derived from a volatile-rich magmatic system. The abundant volatiles probably remarkably facilitated and extended the fractional crystallization though lowering the solidus and viscosity of the magma. Thus, we propose that long-lived crystal fractionation (∼21-15 Ma) and mineralization (∼18-14 Ma) collectively leaded to supernormal enrichment of Sn, W, and Be in the Cuonadong Sn-W-Be polymetallic deposit. In contrast, the enrichment of Sn, W, and Be during the partial melting was insignificant.publishedVersio

    Overcoming the compensation of acceptors in GaN:Mg by defect complex formation

    Get PDF
    In GaN:Mg, the MgGa acceptor is compensated extensively by the formation of nitrogen vacancies (VN) and Mg interstitials (Mgi). However, we show that such compensation can be overcome by forming two kinds of Mg-rich complexes: one that contains VN and the other that contains only MgGa and Mgi. Such complexing not only neutralizes VN and Mgi but also forms better complex acceptors that have lower formation energies and smaller hole localization energies than isolated MgGa. Our results help explain the different doping behaviors in samples grown by different methods

    Overcoming the compensation of acceptors in GaN:Mg by defect complex formation

    Get PDF
    In GaN:Mg, the MgGa acceptor is compensated extensively by the formation of nitrogen vacancies (VN) and Mg interstitials (Mgi). However, we show that such compensation can be overcome by forming two kinds of Mg-rich complexes: one that contains VN and the other that contains only MgGa and Mgi. Such complexing not only neutralizes VN and Mgi but also forms better complex acceptors that have lower formation energies and smaller hole localization energies than isolated MgGa. Our results help explain the different doping behaviors in samples grown by different methods

    A systematic review of human factors and ergonomics (HFE)-based healthcare system redesign for quality of care and patient safety

    No full text
    <div><p>Healthcare systems need to be redesigned to provide care that is safe, effective and efficient, and meets the multiple needs of patients. This systematic review examines how human factors and ergonomics (HFE) is applied to redesign healthcare work systems and processes and improve quality and safety of care. We identified 12 projects representing 23 studies and addressing different physical, cognitive and organisational HFE issues in a variety of healthcare systems and care settings. Some evidence exists for the effectiveness of HFE-based healthcare system redesign in improving process and outcome measures of quality and safety of care. We assessed risk of bias in 16 studies reporting the impact of HFE-based healthcare system redesign and found varying quality across studies. Future research should further assess the impact of HFE on quality and safety of care, and clearly define the mechanisms by which HFE-based system redesign can improve quality and safety of care.</p></div

    Parallel Numerical Simulations of Three-Dimensional Electromagnetic Radiation with MPI-CUDA Paradigms

    Get PDF
    Using parallel computation can enhance the performance of numerical simulation of electromagnetic radiation and get great runtime reduction. We simulate the electromagnetic radiation calculation based on the multicore CPU and GPU Parallel Architecture Clusters by using MPI-OpenMP and MPI-CUDA hybrid parallel algorithm. This is an effective solution comparing to the traditional finite-difference time-domain method which has a shortage in the calculation of the electromagnetic radiation on the problem of inadequate large data space and time. What is more, we use regional segmentation, subregional data communications, consolidation, and other methods to improve procedures nested parallelism and finally verify the correctness of the calculation results. Studying these two hybrid models of parallel algorithms run on the high-performance cluster computer, we draw the conclusion that both models are suitable for large-scale numerical calculations, and MPI-CUDA hybrid model can achieve higher speedup

    Environmental cleaning and disinfection in the operating room: a systematic scoping review through a human factors and systems engineering lens.

    Get PDF
    OBJECTIVE To synthesize evidence and identify gaps in the literature on environmental cleaning and disinfection in the operating room based on a human factors and systems engineering approach guided by the Systems Engineering Initiative for Patient Safety (SEIPS) model. DESIGN A systematic scoping review. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we searched 4 databases (ie, PubMed, EMBASE, OVID, CINAHL) for empirical studies on operating-room cleaning and disinfection. Studies were categorized based on their objectives and designs and were coded using the SEIPS model. The quality of randomized controlled trials and quasi-experimental studies with a nonequivalent groups design was assessed using version 2 of the Cochrane risk-of-bias tool for randomized trials. RESULTS In total, 40 studies were reviewed and categorized into 3 groups: observational studies examining the effectiveness of operating-room cleaning and disinfections (11 studies), observational study assessing compliance with operating-room cleaning and disinfection (1 study), and interventional studies to improve operating-room cleaning and disinfection (28 studies). The SEIPS-based analysis only identified 3 observational studies examining individual work-system components influencing the effectiveness of operating-room cleaning and disinfection. Furthermore, most interventional studies addressed single work-system components, including tools and technologies (20 studies), tasks (3 studies), and organization (3 studies). Only 2 studies implemented interventions targeting multiple work-system components. CONCLUSIONS The existing literature shows suboptimal compliance and inconsistent effectiveness of operating-room cleaning and disinfection. Improvement efforts have been largely focused on cleaning and disinfection tools and technologies and staff monitoring and training. Future research is needed (1) to systematically examine work-system factors influencing operating-room cleaning and disinfection and (2) to redesign the entire work system to optimize operating-room cleaning and disinfection
    • …
    corecore