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The innovative adsorbents known as the Metal-organic Framework (MOFs) had a
high specific surface area, various structural types, and good chemical stability.
MOFs have been produced through hydrothermal, mechanochemical,
microwave-assisted, gelation, and other synthesis methods, and the
solvothermal process is one of them that researchers frequently utilize. The
UiO materials have a more comprehensive application potential than different
subtypes of MOFs among the numerous MOFs that have been synthesized. The
synthesis of MOFs and their composites, as well as the adsorption characteristics
of UiO materials in the adsorption of various heavy metal ions, have all been
examined and summarized in this study.
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1 Introduction

Metal-organic frameworks (MOFs) are crystalline materials with organic linkages bound to
metal centers. They offer a new, promising class of adsorbents characterized by their substantial
surface area, diverse high-quality structures, and chemical stability. Since their discovery in 1995
(Yaghi et al., 1995), the synthesis of more than 20,000MOF compounds has been reported (Deng
et al., 2012; Maurin et al., 2017), leading to their widespread utilization in the adsorption and
catalytic industries. Among these, amino-functionalized MOFs, the UiO-66 type with zirconium
as the central body, have emerged as potential candidates for heavy metal ion adsorption due to
their acid and base resistance and exceptional structural stability.

Various preparation methods have been explored as the application of MOFs becomes
increasingly prevalent. Throughout the manufacturing process, factors such as the
coordination environment, coordination linkage, metal center ion, and chemical ligands
significantly influence the structure of MOFs (Wang et al., 2013). Several reaction variables,
including temperature, the molar ratio of metallic ions to organic ligands, solvent, pH of the
reaction system, component concentration, and reaction time, have been identified as critical
determinants of the resulting MOF structure and properties (Deng et al., 2015). MOFs’
design and control are more straightforward than traditional porous materials, as they can be
synthesized under controlled and mild conditions, leading to materials with enhanced
surface areas, permeabilities, heat resistance, and electrical characteristics (He et al., 2017;
Huo et al., 2017).

MOF materials offer versatility in synthesis methods and exhibit excellent adsorption
properties for heavy metal ions, making them valuable in practical applications. Heavy
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metals pose severe environmental hazards due to their high toxicity
and non-degradability, leading to detrimental effects on the central
nervous system and accumulation in vital organs such as the brain
and liver. Therefore, in this study, we present a comprehensive
review of different synthetic methods for MOF synthesis and their
composites, focusing on the application and future development of
UiOs materials as adsorbents for the removal of heavy metal ions,
including Pb(II), Cd(II), Cr(VI), andHg(II) (Figure 1). This research
aims to contribute to the advancement of efficient and sustainable
strategies for heavy metal ion remediation.

2 Synthesis method of MOFs materials

2.1 Solvothermal synthesis of MOFs

The solvothermal method has emerged as a preferred technique
for synthesizing MOFs due to its ability to control product size,
shape, and crystallinity precisely (Wang and Ho, 2016). This
approach encloses a mixture of metal ions, organic ligands,
conditioning agents, solvents, and other materials within a PTFE
lining. Wang X. et al. (2018) employed a hydrothermal method to
synthesize copper-basedMOFs, abbreviated as Cu-MOFs. The study
demonstrated the achievement of high crystallinity and a stable
morphological structure, despite the time-consuming nature of the
procedure and its relatively low yield (Wang et al., 2014).

2.2 Mechanochemical synthesis of MOFs

The mechanochemical or grind approach can produce MOFs
through mechanical stirring or impacts between components
(Wei et al., 2017). It is recognized as an environmentally

friendly synthetic technique (Singh et al., 2017). This
approach successfully reduces reaction times, eliminates the
need for high temperatures, and minimizes or eliminates the
use of organic solvents (Jing et al., 2006; Wang, 2013; Han et al.,
2017; Kubota et al., 2019). Mechanochemical synthesis methods
for MOF materials can be categorized into three groups: 1) Neat
grinding (NG) (Pichon et al., 2006), where no solvent is utilized
throughout the reaction process. 2) Liquid-assisted grinding
(LAG) (Friščić et al., 2006; Friščić and Fábián, 2009)
accelerates the mechanical chemical reaction by introducing a
small amount of solvent, thereby enhancing reactant activity at
the molecular level. 3) Ion-and-liquid aided grinding (ILAG)
(Friščić et al., 2010), which expedites MOF synthesis by
simultaneously employing a small amount of solvent and
salt ions.

2.3 Synthesis of MOFs by microwave-
assisted method

The microwave-assisted synthesis method offers a more efficient
and straightforward alternative to the hydrothermal method for
synthesizing Bulk-Al-PMOF. The hydrothermal method typically
requires a lengthy reaction time of 16 h at 180°C. In contrast, the
microwave method significantly shortens the synthesis time.
Furthermore, the size of UiO-66 crystals grown using the
microwave method was approximately 100 nm, four times
smaller than the crystals produced using conventional heating,
measuring around 400 nm (Li et al., 2014). This reduction in
crystal size can be attributed to increased nucleation caused by
the heating process, leading to the formation of smaller crystals with
more nuclei (Li et al., 2014; Vakili et al., 2018).

In addition to crystal size reduction, the microwave method was
employed in synthesizing UiO-66 (Taddei et al., 2015), resulting in
an end product with a narrower pore-size distribution. Notably, the
microwave technique substantially reduces synthesis time compared
to conventional solvent heating, decreasing from 24 h to just 0.5 h.

2.4 Synthesis of MOFs by diffusion

The gel diffusion method involves mixing various materials for
an extended period to facilitate the formation of MOF crystals
through gel branching, wherein organic ligands are dispersed
within the gel (Dhanya et al., 2013). Liquid-phase diffusion can
be utilized by dissolving the central ion and organic ligand in an
incompatible solvent. These solutions can be combined, and upon
contact, MOF crystal products are generated (Xie et al., 2017). In the
case of gas-phase diffusion, a volatile organic ligand solution serves
as the solvent. MOFs can be synthesized by combining solutions of
an organic ligand and core ion (Wu et al., 2016). The diffusion
method is commonly employed for MOF synthesis, typically carried
out over an extended period under mild reaction conditions (Wang
F. X. et al., 2017). Shearer et al. successfully produced transparent
UiO-66 using the diffusion approach (Shearer et al., 2013); however,
the process required 2 weeks at 100°C. A simplified schematic
illustrating the formation of MOFs via gas-phase diffusion is
provided (Bian et al., 2018).

FIGURE 1
UiO-66 adsorption of heavy metal ions.
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3 Heavy metal ion adsorption by UiOs

The 20th century witnessed a significant surge in industrial
growth, necessitating substantial energy consumption. However,
this growth has resulted in energy supply challenges, ecological
damage, and environmental degradation (Li et al., 2021). Dealing
toxic heavy metals and large quantities of contaminants into water
severely threatens human life and other species. Heavy metal
contamination remains at the top of the “blacklist” among
various forms of water pollution due to its persistent nature and
difficulty in containment and recovery. Addressing this issue
requires effective wastewater treatment methods.

Several approaches are employed for the treatment of heavy
metal pollution in wastewater, including chemical precipitation
(Sarker et al., 2018), ion exchanges (Hashim et al., 2011),
membrane separation (Chen et al., 2021a), evaporation (Chen
et al., 2010), electro-coagulation (Bouhamed et al., 2012), and
sorption (Al-Shannag et al., 2015; Chen et al., 2021b; Dong et al.,
2021). Among these, the adsorption technique is widely recognized
as the optimal choice for removing contaminants fromwater (Dinari
and Tabatabaeian, 2018; Duman et al., 2020; Hoslett et al., 2020;
Tabatabaeian et al., 2021). This technique is valued for its simplicity
(Wu et al., 2018), efficiency (Liu et al., 2019), environmental
friendliness (Chen et al., 2018), excellent removal efficacy (Zhang
et al., 2017), and affordability (Wang et al., 2020).

3.1 Adsorption of Pb(II)

Lead (Pb) is a toxic and heavy metal that poses risks to human
health and the environment. It is primarily generated through
industrial wastewater treatment, battery disposal, and paint
coating (Cechinel et al., 2014). Due to its non-biodegradable
nature, Pb can accumulate in organisms, gradually infiltrating

food chains and posing a threat to various species (Dong et al.,
2010). Once collected in the human body, Pb exhibits extreme
toxicity, affecting nearly all central organ systems. This can lead to
conditions such as anemia, kidney disorders, cardiac disease,
cerebral injury, cancers, endocrine disorders, and potentially fatal
damage to the liver and reproductive functions (Charlet et al., 2012;
Skipper et al., 2016).

In their study, Fu et al. (2019) achieved the efficient and targeted
separation and removal of Pb(II) from water by converting the
amino group in UiO-66-NH2 to a hydroxyl group using resorcinol
formaldehyde, resulting in the synthesis of UiO-66-RSA. Under
optimal conditions, UiO-66-RSA exhibited a maximum adsorption
capacity of 189.8 mg/g for Pb(II), and even after five repeated use
experiments, the adsorption rate only decreased by 3.7%.

3.2 Adsorption of Cr(VI)

Hexavalent chromium [Cr(VI)] is a widely used and highly
hazardous heavy metal ion in various industries such as mining,
tanning, metallurgy, and dyeing (Altundogan, 2005). Its exceptional
water solubility and mobility contribute to the significant health
risks it poses to humans, including genotoxic, mutagenic,
teratogenic, and carcinogenic effects (Testa et al., 2004; Costa
and Klein, 2006; Mohan and Pittman, 2006; Rapti et al., 2016;
Zhang et al., 2018).

In their study, Fidelli et al. (2021) synthesized zirconium
benzodicarboxylate (UiO-66) and zirconium
benzodicarboxylate-NH2 (UiO-66-NH2) using
mechanochemical methods for investigating Cr(VI)
adsorption. The authors compared the adsorption
characteristics of UiO-66 and UiO-66-NH2, synthesized
through liquid-assisted grinding (LAG) and solution methods,
under aqueous conditions. Four compounds were named UiO-66

FIGURE 2
UiO-66-NH2/AHMP synthetic processes. (Figure 2 from Ref (Ruan et al., 2022). reproduced with permission of the author).
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(LAG), UiO-66-NH2 (LAG), UiO-66 (SOL), and UiO-66-NH2

(SOL). The results revealed that UiO-66-NH2 (LAG) exhibited a
maximum Cr(VI) adsorption capacity of 36.6 ± 0.9 mg/g.

Shi et al. (Peng et al., 2021) developed a membrane adsorbent
solution by coating a polyethersulfone (PES) membrane with a
mixture of tannic acid, chitosan, and UiO-66 to remove Cr(VI)
from water. The researchers varied the MOF loads and
maintained a pH of 3.5 while fabricating the membrane-like
adsorbent. The resulting adsorbent demonstrated excellent
denseness, rapid separation, and high removal efficiency for
Cr(VI) in water. Specifically, the addition of 30% chitosan
loading enhanced the maximum removal rate of all three
pollutants, resulting in a 99% removal rate in conjunction
with the weight of UiO-66.

3.3 Adsorption of Cd(II)

Cd(II), a highly toxic metal in the environment, poses significant
concerns for ecosystems and human health. It can cause lesions in
various organs, particularly the kidneys (Flora et al., 2012).
Furthermore, Cd(II) exposure has been linked to bone damage,
cancer, tracheitis, chronic obstructive lung disease, eschar
formation, and fibrillation (Ihsanullah.Abbas et al., 2016).
Although several methods are available for Cd(II) removal,
traditional sorbents like activated carbon often exhibit limited
sorption capacities and lack adaptability (Kim et al., 2015; Lin
et al., 2015). Therefore, the development of novel and efficient
sorbents is of utmost importance.

In their study, Jamshidifard et al. (2019) synthesized UiO-66-
NH2 using microwave heating and incorporated it into PAN
chitosan nanofiber membranes. This composite material was
utilized for both sorption and membrane filtration to remove
Cd(II) from water. The results revealed that under optimal
conditions, the adsorbent exhibited a maximum sorption capacity
of 415.6 mg/g for Cd(II).

3.4 Adsorption of U(VI)

Uranium is a globally abundant resource and a significant fuel
source. However, the mining and processing of uranium result in the
generation of large quantities of uranium-containing wastewater.
Without proper treatment, radioactive uranium nuclides can
migrate through subsurface percolation and surface runoff,
contaminating the ecosystem and wasting uranium resources
(Peng et al., 2014; Xiao et al., 2015; Wang C. et al., 2018). The
wastewater from uraniummines is complex in composition, with low
uranium levels and the coexistence of various ions during practical
production (Ren et al., 2015). To address the adsorption of U(VI),
Zhang et al. (2022) employed amine oxime derivatives of UiO-66-
(OH)2, which were chemically modified from UiO-66. These
derivatives exhibited similar morphology to UiO-66(OH)2 but had
significantly larger surface areas, more activated centers, and a higher
affinity for bindingU(VI). Yin et al. (Cheng et al., 2018) developed the
porous material HP-UiO-66-35 by adjusting the dodecanoic inducer
acid and reducing the particle size to 35 nm. This material
demonstrated excellent adsorption performance.

To enhance the adsorption capabilities further, Wu et al. (2022)
created g-C3N4/UiO-66 composites (CNUIO) by immobilizing
UiO-66 onto a graphitic carbon nitride (g-C3N4) adsorbent
surface. This composite overcomes the limitations of individual
components by increasing specific surface areas, enriching surface
functionality groups, and enhancing U(VI) adsorption capacity.
CNUIO offers a practical and effective adsorbent for uranium
water purification.

3.5 Adsorption of Hg(II)

Mercury (Hg) is considered to have the highest biological
toxicity among non-biodegradable heavy metal ions. The World
Health Organization and the European Union have set strict
guidelines for Hg concentrations in clean water, with
recommended limits below 1 μg/mL and 1 μg/L, respectively. To
address this issue, Ruan et al. (2022) successfully developed a novel
complex adsorbent called UiO-66-NH2/AHMP to extract Hg(II)
from aqueous solutions. The morphological features of the
adsorbents before and after modification were analyzed using FE-
SEM. The similar sizes and morphologies observed before and after
modification indicate that the chemical changes did not significantly
alter the surface morphologies of the new MOF.

3.6 Adsorption of Cu(II)

Copper (Cu) is an essential element for human metabolism, but
excessive amounts of copper in drinking water can pose significant
risks to human health. It is the second most hazardous element in
drinking water after mercury (Hg). (Bolisetty et al., 2019). Elevated
exposure to copper has been associated with various adverse effects
on the body, including high blood pressure, increased respiration
rate, and damage to the kidneys and liver. Symptoms of copper
toxicity can include convulsions, cramps, vomiting, and in severe
cases, even death (Zhu et al., 2020). The release of copper into water
resources as a cationic metallic ion can exacerbate dangerous
conditions. Prolonged exposure to copper-contaminated water
can result in anemia, nausea, gastrointestinal discomfort,
cyanosis, renal damage, and shortness of breath, potentially fatal
consequences.

Eltaweil et al. (2021) developed UiO-66/GOCOOH@SA
complex microbeads by combining UiO-66 and GOCOOH in SA
microbeads. This composite material shows extraordinary potential
for removing Cu(II) from wastewater. SEM images of GOCOOH
revealed broken lamellae, suggesting disruption of the GO lamellae
during carboxylation processes (Eltaweil et al., 2020). Dried SA
beads exhibited a stretched form, and visible cracks and rough
surfaces were observed due to dehydration (Elnashar et al., 2015).
UiO-66/GOCOOH@SA composite beads consist of granular quasi-
spherical UiO-66 combined with GOCOOH and SA. SEM images of
the mixed beads revealed spherical shapes with highly rough
surfaces, likely due to the different chemistry of the constituent
parts. Notably, the UiO-66/GOCOOH@SA composite beads
showed no cracks on the surface, indicating a superior organic
structure compared to the SA beads. The adsorption capacity of
UiO-66/GOCOOH@SA for Cu(II) was found to be 343.49 mg/g,
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and the adsorption rate remained above 87% even after five replicate
experiments.

UiO-66, a specific subtype of MOFs, offers several distinct
advantages over other MOFs in the adsorption of heavy metals.
Its highly stable structure ensures durability and effectiveness in
heavy metal ion adsorption processes, maintaining its adsorption
capacity over prolonged periods. Secondly, UiO-66 has a large
specific surface area, providing a higher density of active sites for
enhanced adsorption efficiency and power than other MOFs.
Furthermore, UiO-66 exhibits exceptional chemical stability over
a wide range of pH conditions, enabling reliable adsorption
performance even in acidic or alkaline environments, making it
suitable for diverse environmental remediation applications.
Moreover, the structure of UiO-66 can be easily modified or
functionalized, allowing for enhanced selectivity and affinity
towards specific heavy metal ions. Tailoring the functional
groups within UiO-66 enables customization of its adsorption
properties, leading to a more efficient and selective adsorption
process.

In summary, the outstanding stability, high surface area,
chemical resistance, and tunable functionality of UiO-66 make it
a superior adsorbent for heavy metal ions compared to other MOFs.
These unique properties highlight its potential in various
environmental applications, including wastewater treatment and
pollution remediation. The advantages of UiO-66 underscore its
importance in heavy metal ion adsorption and emphasize its
potential as a promising solution for environmental challenges
associated with heavy metal contamination.

4 Adsorption parameters, conditions,
and kinetic analysis of UiOs

4.1 Analysis of adsorption parameters

Understanding the effects of temperature, adsorbent dosage,
adsorbent contact time, and pH on the adsorption process of UiO-66
is vital for optimizing adsorption efficiency and designing effective
adsorption systems.

Temperature plays a significant role in adsorption, influencing
kinetic energy and intermolecular interactions. Generally, higher
temperatures reduce adsorption capacity due to increased thermal
energy, which weakens the adsorbate-adsorbent interactions.
Conversely, lower temperatures enhance adsorption efficiency by
promoting stronger adsorbate-adsorbent binding.

The adsorbent dosage is an important parameter that affects the
available adsorption sites. Increasing the adsorbent dosage provides
more active sites for adsorption, leading to improved adsorption
capacity. However, excessively high dosages may cause site blocking
and hinder adsorption performance. Therefore, optimizing the
adsorbent dosage is essential for achieving optimal adsorption
efficiency.

Adsorbent contact time influences the rate of adsorption and
equilibrium attainment. Prolonged contact time allows for more
thorough interaction between the adsorbate and adsorbent,
increasing adsorption capacity. Longer contact times will enable
the adsorbate molecules to diffuse into the adsorbent pores,
maximizing adsorption efficiency.

The initial concentration of the adsorbate affects the driving
force for adsorption. Higher initial concentrations result in a more
substantial concentration gradient, enhancing adsorption
performance. However, there is an optimal range for the initial
engagement, as excessively high concentrations can saturate the
adsorbent and limit further adsorption.

Additionally, The pH of the solution plays a crucial role in the
adsorption of heavy metal ions by adsorbents. It influences
hazardous compounds’ surfaces, chemistry, distribution, and
morphologies in aqueous systems. The pH controls the
dissociation of acidic and basic substances in heavy metal ion
solutions. When the pH exceeds a specific range, the adsorbents
may undergo dissociation, which can limit their ability to adsorb
heavy metal ions. The solubility and charge of the adsorbents are
also affected by the pH of the solution. Therefore, it is essential to
experiment and determine the optimal pH level for adsorption
experiments.

The pH of the initial solution significantly affected the sorption
capabilities of HP-UIO-66 and CNUIO for U(VI). For example, the
sorption rate for U(VI) from CNUIO increased from 22.03% to
95.01% as the pH increased from 2 to 6. However, sorption
decreased to 88.90% as the pH increased to 8. The starting
pH also affected the removal efficiency of Hg(II) using UiO-66-
NH2/AHMP, with maximum removal achieved at pH 6. The
sorption capacity of Cu(II) increased as the pH increased from
3 to 5 and then remained relatively constant. Similarly, the
adsorption capacity of Au(III) was highest at pH four and
gradually decreased as the pH increased but sharply increased
again with further pH increase.

In summary, the adsorption process of UiO-66 is influenced by
several crucial parameters. Temperature affects the strength of
adsorbate-adsorbent interactions, with higher temperatures
generally reducing adsorption capacity. Adsorbent dosage plays a
significant role in providing adsorption sites where an optimal
dosage is required to achieve optimal performance. Longer
adsorbent contact times allow for increased adsorption by
facilitating more extensive interaction between the adsorbate and
adsorbent. The adsorbate’s initial concentration impacts the
adsorption’s driving force, with higher concentrations generally
leading to improved adsorption performance within a specific
range. The pH of the solution is an important parameter to
consider in heavy metal ion adsorption studies, as it can
significantly impact the adsorption capacity and behavior of the
adsorbents.

4.2 Reusability of adsorbents

Reusability is critical when utilizing adsorbents to remove
heavy metal ions from wastewater. It can effectively reduce the
use of organic solvents required to generate the adsorbent, thus
reducing the environmental pollution from organic solvents. In
addition, reusability has a cost-saving economy. The study
conducted by Yang et al. (Sun et al., 2016) demonstrated the
excellent reusability of etched UiO-66/CTS, with a removal rate
of 80.03% for Pb(II) and 75.34% for Cd(II) over five reuse cycles.
Similarly, Wu et al. (2022) reported that CNUIO successfully
removed U(VI) with a removal efficiency exceeding 85% in the
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first three experiments, indicating its potential for heavy metal
ion absorption. However, the sorption rates gradually declined to
approximately 80% after five iterations of desorption
experiments. The results from five sorption-desorption studies
indicated that CNUIO possessed a high capacity for short-term
regeneration, but its ability weakened with increasing cycles.

4.3 Adsorption kinetic analysis

The kinetics of adsorption processes can be described using first-
order and second-order kinetic models. The pseudo-first-order
model (Eq. 1) and pseudo-second-order model (Eq. 2) are
commonly used to analyze the kinetics of adsorption (Plazinski
et al., 2009; Alberti et al., 2012; Tran et al., 2017).

ln qe − qt( ) � ln qe −K1t (1)
t

qt
� 1
K2q2e

+ t

qe
(2)

where qt (1/mg) is the amount of adsorbate adsorbed at a time t), qe
(mg/g) is the equilibrium adsorption capacity, and K1 (1/min) is the
rate constant of the pseudo-first-order model, and K2 (g/mg-min) is
the rate constant of the pseudo-second-order model.

Several studies have employed these kinetic models to analyze
the adsorption of heavy metal ions using different adsorbents. To
explain the kinetics of NH2-functionalized MOF adsorption for
Cd(II) and Pb(II) at varied temperatures, Wang K. et al. (2017) used
a postulated second-order model. According to the results, the
recommended second-order model is well-conformed to the
sorption values from Zhao et al. (2015). The sorption result
shows that after 120 min of adsorption at 30°C, pH 6, and
10 mg/L concentration, 99.95% of the Pb(II) was removed, for
the starting values at 40 mg/L, sorption of Cd(II) amounted to
177.35 mg/g. The Cd(II) sorption obtained 177.35 mg/g for the
40 mg/L starting values. Wu et al. (2019) analyzed the removal of
metal ions [Eu(III), Hg(II), and Pb(II)] using UiO-66-EDTA and
found that the fitted second-order model accurately simulated the
kinetics of metal ion adsorption. Eltaweil et al. (2021) investigated
the adsorption of MB and Cu(II) on UiO-66/GOCOOH@SA
complex microbeads. They used both first- and second-order
models and found that the pseudo-second-order model
characterized the adsorption process well. Zhang et al. (2022)
studied the sorption kinetics of a car amidoxime-modified UiO-
66-(OH)2 derivative for U(VI). They compared the first-order and
second-order kinetic models and found that the second-order model
better fit the experimental data (R2 = 0.9952 > R2 = 0.9400).

In summary, the choice of kinetic model depends on the specific
adsorption system and the experimental data. The second-order
model is often found to provide a better fit for describing the kinetics
of heavy metal ion adsorption.

5 Conclusion and outlook

Indeed, UiO materials, including UiO-66 and its composites,
have shown good adsorption properties for heavy metal ions. The
sorption processes observed in these studies indicate that the
adsorption of heavy metal ions onto UiO materials follows

chemisorption, which involves solid chemical interactions
between the adsorbent and adsorbate. UiO materials have
demonstrated several advantages as adsorbents, including short
sorption times, good water stability, and high sorption capacities.
These properties make them superior to other sorbents, as they can
rapidly remove heavy metal ions from aqueous solutions while
achieving high adsorption efficiencies.

When considering the selection of MOF materials for heavy
metal ion adsorption, it is essential to consider factors such as the
cost of production, environmental considerations associated with
heavy metal ion adsorption, and the goal of achieving sustainable
development. MOFs with favorable properties, such as UiO
materials, hold promise in addressing these aspects and can
potentially be effective and sustainable solutions for heavy
metal ion removal in various applications. UiO-66, as a
versatile MOF, has shown great potential for multiple
applications, including the remediation of rich metal-
contaminated environments. Its unique properties, such as
high surface area, tunable pore size, and chemical stability,
make it an attractive candidate for addressing environmental
pollution challenges. In heavy metal ion removal, UiO-66 exhibits
several advantages over other MOFs. Firstly, its exceptional
adsorption capacity efficiently removes heavy metal ions from
contaminated water sources. Studies have demonstrated that
UiO-66 can achieve high sorption capacities for a wide range
of heavy metal ions, including Pb(II), Cd(II), Cr(VI), and U(VI).
This capability is crucial for effective environmental remediation.

Additionally, UiO-66 has shown excellent performance in terms
of sorption kinetics. It exhibits fast adsorption rates, leading to
shorter sorption times than other sorbents. Furthermore, the
pH range of 4-8 has been identified as the optimal range for the
adsorption studies using UiO materials. Within this pH range, UiO
materials exhibit the best adsorption performance and the fastest
adsorption rate. This suggests that the surface chemistry and
functional groups of UiOs are highly responsive to the pH of the
solution, leading to enhanced adsorption of heavy metal ions. This
attribute is precious in practical applications where rapid removal of
heavy metal ions is desired.

Moreover, UiO-66’s stability under varying environmental
conditions enhances its suitability for real-world applications. Its
robust structure and resistance to pH changes make it a reliable
adsorbent for diverse environments. Furthermore, the reusability of
UiO-66 adsorbents is a critical consideration. Researchers have
explored various regeneration techniques, such as desorption
with suitable solvents or pH adjustment, to restore the
adsorption capacity of UiO-66 after each cycle. This capability
promotes the sustainability and cost-effectiveness of UiO-66-
based remediation processes.

UiO-66 exhibits excellent promise for applying heavy metal
ion removal in environmental remediation. At present, MOFs
for practical applications are still in the initial stage. The lack of
synthetic methods for preparing MOFs in large quantities
greatly hinders the industrialization of MOFs. Large-scale
and low-cost green production methods are still under
research. Most MOF-based materials are now available in
powder form, limiting their use in practical situations.
Although some MOFs have been industrialized, such as MOF
WORX’s mass production of MOF powders using flow-through
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synthesis, this production method is limited to new MOF types,
of which UiO-66 is one of the pristine MOFs. Synthesized
powder MOFs are more challenging to handle and often
require expensive and time-consuming techniques, such as
centrifugation. They also pose inherent safety issues, such as
respiratory health risks. This is very detrimental and limits
MOF powders’ processing into valuable products. Therefore,
further research and development are necessary to optimize
their performance, scalability, and integration with existing
remediation technologies. In conclusion, the existing green
synthesis methods for large-scale preparation of MOF still
need to be explored, and we still need to improve the
synthesis methods for practical applications today with the
help of the green synthesis methods for successful mass
production of MOF in the laboratory, to promote the
development of MOF industrialization.
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