5 research outputs found

    Electrically Heatable Graphene Aerogels as Nanoparticle Supports in Adsorptive Desulfurization and High‐Pressure CO2 Capture

    Get PDF
    Reduced‐graphene‐oxide (rGO) aerogels provide highly stabilising, multifunctional, porous supports for hydrotalcite‐derived nanoparticles, such as MgAl‐mixed‐metal‐oxides (MgAl‐MMO), in two commercially important sorption applications. Aerogel‐supported MgAl‐MMO nanoparticles show remarkable enhancements in adsorptive desulfurization performance compared to unsupported nanoparticle powders, including substantial increases in organosulfur uptake capacity (>100% increase), sorption kinetics (>30‐fold), and nanoparticle regeneration stability (>3 times). Enhancements in organosulfur capacity are also observed for aerogel‐supported NiAl‐ and CuAl‐metal‐nanoparticles. Importantly, the electrical conductivity of the rGO aerogel network adds completely new functionality by enabling accurate and stable nanoparticle temperature control via direct electrical heating of the graphitic support. Support‐mediated resistive heating allows for thermal nanoparticle recycling at much faster heating rates (>700 °C∙min−1) and substantially reduced energy consumption, compared to conventional, external heating. For the first time, the CO2 adsorption performance of MgAl‐MMO/rGO hybrid aerogels is assessed under elevated‐temperature and high‐CO2‐pressure conditions relevant for pre‐combustion carbon capture and hydrogen generation technologies. The total CO2 capacity of the aerogel‐supported MgAl‐MMO nanoparticles is more than double that of the unsupported nanoparticles and reaches 2.36 mmol·CO2 g−1 ads (at p CO2 = 8 bar, T = 300 °C), outperforming other high‐pressure CO2 adsorbents

    Identification of ALG3 as a potential prognostic biomarker in lung adenocarcinoma

    No full text
    Background: The abnormal expression of Alpha-1,3-mannosyltransferase (ALG3) has been implicated in tumor promotion. However, the clinical significance of ALG3 in Lung Adenocarcinoma (LUAD) remains poorly understood. Therefore, we aimed to assess the prognostic value of ALG3 and its association with immune infiltrates in LUAD. Methods: The transcriptional expression profiles of ALG3 were obtained from the Cancer Genome Atlas (TCGA), comparing lung adenocarcinoma tissue with normal tissues. To determine the prognostic significance of AGL3, Kaplan-Meier plotter, and Cox regression analysis were employed. Logistic regression was utilized to analyze the association between ALG3 expression and clinical characteristics. Additionally, a receiver operating characteristic (ROC) curve and a nomogram were constructed. To explore the underlying mechanisms, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene set enrichment analysis (GSEA) was conducted. The relationship between AGL3A mRNA expression and immune infiltrates was investigated using the tumor immune estimation resource (TIMER) and tumor-immune system interaction database (TISIDB). Furthermore, an in vitro experiment was performed to assess the impact of ALG3 mRNA on lung cancer stemness abilities and examine key signaling pathway proteins. Results: Our results revealed the ALG3 mRNA and protein expression in patients with LUAD was much higher than that in adjacent normal tissues. High expression of ALG3 was significantly associated with N stage (N0, HR = 1.98, P = 0.002), pathological stage (stage I, HR = 2.09, P = 0.003), and the number of pack years (<40, HR = 2.58, P = 0.001). Kaplan–Meier survival analysis showed that high expression of ALG3 was associated with poor overall survival (P < 0.001), disease-free survival (P < 0.001), and progression-free interval (P = 0.007). Through multivariate analysis, it was determined that elevated ALG3 expression independently impacted overall survival (HR = 1.325, P = 0.04). The Tumor Immune Estimation Resource discovered a link between ALG3 expression and tumor-infiltrating immune cells in LUAD. Additionally, ROC analysis proved that ALG3 is a reliable diagnostic marker for LUAD (AUC:0.923). Functional pathways analysis identified that ALG3 is negatively correlated with FAT4. We performed qRT-PCR to assess that knockdown ALG3 expression significantly upregulated FAT4 expression. Spheroid assay and flow cytometry analysis results showed that downregulated of ALG3 inhibited H1975 cell line stemness. Western blot analysis revealed that decreased ALG3 inhibited the YAP/TAZ signal pathway. Conclusion: High expression of ALG3 is strongly associated with poor prognosis and immune infiltrates in LUAD

    Patterns of Genetic Diversity in Remaining Giant Panda Populations

    No full text
    The giant panda (Ailuropoda melanoleuca) is among the more familiar symbols of species conservation. The protection of giant panda populations has been aided recently by the establishment of more and better-managed reserves in existing panda habitat located in six mountain ranges in western China. These remaining populations are becoming increasingly isolated from one another, however, leading to the concern that historic patterns of gene flow will be disrupted and that reduced population sizes will lead to diminished genetic variability. We analyzed four categories of molecular genetic markers (mtDNA restriction-fragment-length polymorphisms [RFLP], mtDNA control region sequences, nuclear multilocus DNA fingerprints, and microsatellite size variation) in giant pandas from three mountain populations (Qionglai, Minshan, and Qinling) to assess current levels of genetic diversity and to detect evidence of historic population subdivisions. The three populations had moderate levels of genetic diversity compared with similarly studied carnivores for all four gene measures, with a slight but consistent reduction in variability apparent in the smaller Qinling population. That population also showed significant differentiation consistent with its isolation since historic times. From a strictly genetic perspective, the giant panda species and the three populations look promising insofar as they have retained a large amount of genetic diversity in each population, although evidence of recent population reduction—likely from habitat loss—is apparent. Ecological management to increase habitat, population expansion, and gene flow would seem an effective strategy to stabilize the decline of this endangered species
    corecore