228 research outputs found
Toward Collinearity-Avoidable Localization for Wireless Sensor Network
In accordance with the collinearity problem during computation caused by the beacon nodes used for location estimation which are close to be in the same line or same plane, two solutions are proposed in this paper: the geometric analytical localization algorithm based on positioning units and the localization algorithm based on the multivariate analysis method. The geometric analytical localization algorithm based on positioning units analyzes the topology quality of positioning units used to estimate location and provides quantitative criteria based on that; the localization algorithm based on the multivariate analysis method uses the multivariate analysis method to filter and integrate the beacon nodes coordinate matrixes during the process of location estimation. Both methods can avoid low estimation accuracy and instability caused by multicollinearity
Metabolic effects of selective deletion of group VIA phospholipase A2 from macrophages or pancreatic islet beta-cells
To examine the role of group VIA phospholipase
Ruthenium-catalyzed cascade C-H activation/annulation of N-alkoxybenzamides : reaction development and mechanistic insight
A highly selective ruthenium-catalyzed C-H activation/annulation of alkyne-tethered N-alkoxybenzamides has been developed. In this reaction, diverse products from inverse annulation can be obtained in moderate to good yields with high functional group compatibility. Insightful experimental and theoretical studies indicate that the reaction to the inverse annulation follows the Ru(ii)-Ru(iv)-Ru(ii) pathway involving N-O bond cleavage prior to alkyne insertion. This is highly different compared to the conventional mechanism of transition metal-catalyzed C-H activation/annulation with alkynes, involving alkyne insertion prior to N-O bond cleavage. Via this pathway, the in situ generated acetic acid from the N-H/C-H activation step facilitates the N-O bond cleavage to give the Ru-nitrene species. Besides the conventional mechanism forming the products via standard annulation, an alternative and novel Ru(ii)-Ru(iv)-Ru(ii) mechanism featuring N-O cleavage preceding alkyne insertion has been proposed, affording a new understanding of transition metal-catalyzed C-H activation/annulation
Data-Driven Dynamic Inversion Method for Complex Fractures in Unconventional Reservoirs
Hydraulic fracturing is a crucial technology for enhancing the recovery of oil and gas from unconventional reservoirs. Accurately describing fracture morphology is essential for accurately predicting production dynamics. This article proposes a new fracture inversion model based on dynamic data-driven methods, which is different from the conventional linear elastic fracture mechanics model. This method eliminates the need to consider complex mechanical mechanisms, resulting in faster simulation speeds. In the model, the fracture morphology is constrained by combining microseismic data and fracturing construction data, and the fracture tip propagation domain is introduced to characterize the multi-directionality of fracture propagation. The simulated fracture exhibits a multi-branch fracture network morphology, aligning more closely with geological understanding. In addition, the influence of microseismic signal intensity on the direction of fracture propagation is considered in this study. The general stochastic approximation (GSA) algorithm is employed to optimize the direction of fracture propagation. The proposed method is applied to both the single-stage fracturing model and the whole well fracturing model. The research findings indicate that in the single-stage fracturing model, the inverted fracture morphology aligns closely with the microseismic data, with a fitting rate of the fracturing construction curve exceeding 95%, and a microseismic data fitting rate exceeding 93%. In the whole well fracturing model, a total of 18 sections were inverted. The fitting rate between the overall fracture morphology and the microseismic data reached 90%. The simulation only took 5 minutes, demonstrating high computational efficiency and meeting the needs of large-scale engineering fracture simulation. This method can effectively support geological modeling and production dynamic prediction
The Systemic Immune Inflammatory Index Predicts No-Reflow Phenomenon after Primary Percutaneous Coronary Intervention in Older Patients with STEMI
Purpose: Coronary no-reflow phenomenon (NRP), a common adverse complication in patients with ST-segment elevation myocardial infarction (STEMI) treated by percutaneous coronary intervention (PCI), is associated with poor patient prognosis. In this study, the correlation between the systemic immune-inflammation index (SII) and NRP in older patients with STEMI was studied, to provide a basis for early identification of high-risk patients and improve their prognosis.Materials and methods: Between January 2017 and June 2020, 578 older patients with acute STEMI admitted to the Department of Cardiology of Hebei General Hospital for direct PCI treatment were selected for this retrospective study. Patients were divided into an NRP group and normal-flow group according to whether NRP occurred during the operation. Clinical data and the examination indexes of the two groups were collected. Logistic regression was used to analyze the independent predictors of NRP, and the receiver operating characteristic curve was used to further analyze the ability of SII to predict NRP in older patients with STEMI.Results: Multivariate logistic analysis indicated that hypertension (OR=2.048, 95% CI:1.252–3.352, P=0.004), lymphocyte count (OR=0.571, 95% CI:0.368–0.885, P=0.012), platelet count (OR=1.009, 95% CI:1.005–1.013, P<0.001), hemoglobin (OR=1.015, 95% CI:1.003–1.028, P=0.018), multivessel disease (OR=2.237, 95% CI:1.407–3.558, P=0.001), and SII≥1814 (OR=3.799, 95% CI:2.190–6.593, P<0.001) were independent predictors of NRP after primary PCI in older patients with STEMI. Receiver operating characteristic curve analysis demonstrated that SII had a high predictive value for NRP (AUC=0.738; 95% CI:0.686–0.790), with the best cut-off value of 1814, a sensitivity of 52.85% and a specificity of 85.71%.Conclusion: For older patients with STEMI undergoing primary PCI, SII is a valid predictor of NRP
Geometric morphometric analysis of Protoconites minor from the Cambrian (Terreneuvian) Yanjiahe Formation in Three Gorges, South China
The Ediacaran to Cambrian transition is a critical interval of time during which major evolutionary changes occurred. Recently, abundant Protoconites minor have been recovered from the silty shales of the lower Cambrian Yanjiahe Formation (Terreneuvian, Fortunian - Stage 2) in the Three Gorges area of South China. These fossils represent an important ecological diversification of macroscopic organisms at the onset of the Cambrian. Protoconites minor is a probable cnidarian-grade organism preserved by carbon compression. Herein, geometric morphometric analyses are applied to crack out specimens of P. minor to reveal any cryptic morphological details that may have implications for their morphological diversity, ontogenetic processes, and taxonomic identification. These statistical analyses reveal a strong relationship between size and shape, which indicates that the overall shape of P. minor was mainly controlled by allometric growth. The smaller specimens are generally wider at the anterior and more commonly have straight-sides. Larger individuals tend to be narrower at the anterior, with bending more common. Our analyses demonstrate that there are transitional forms between larger, strongly bent specimens and smaller, straight specimens, suggesting that the assemblage likely consists of a single species
Soil diazotrophic abundance, diversity, and community assembly mechanisms significantly differ between glacier riparian wetlands and their adjacent alpine meadows
Global warming can trigger dramatic glacier area shrinkage and change the flux of glacial runoff, leading to the expansion and subsequent retreat of riparian wetlands. This elicits the interconversion of riparian wetlands and their adjacent ecosystems (e.g., alpine meadows), probably significantly impacting ecosystem nitrogen input by changing soil diazotrophic communities. However, the soil diazotrophic community differences between glacial riparian wetlands and their adjacent ecosystems remain largely unexplored. Here, soils were collected from riparian wetlands and their adjacent alpine meadows at six locations from glacier foreland to lake mouth along a typical Tibetan glacial river in the Namtso watershed. The abundance and diversity of soil diazotrophs were determined by real-time PCR and amplicon sequencing based on nifH gene. The soil diazotrophic community assembly mechanisms were analyzed via iCAMP, a recently developed null model-based method. The results showed that compared with the riparian wetlands, the abundance and diversity of the diazotrophs in the alpine meadow soils significantly decreased. The soil diazotrophic community profiles also significantly differed between the riparian wetlands and alpine meadows. For example, compared with the alpine meadows, the relative abundance of chemoheterotrophic and sulfate-respiration diazotrophs was significantly higher in the riparian wetland soils. In contrast, the diazotrophs related to ureolysis, photoautotrophy, and denitrification were significantly enriched in the alpine meadow soils. The iCAMP analysis showed that the assembly of soil diazotrophic community was mainly controlled by drift and dispersal limitation. Compared with the riparian wetlands, the assembly of the alpine meadow soil diazotrophic community was more affected by dispersal limitation and homogeneous selection. These findings suggest that the conversion of riparian wetlands and alpine meadows can significantly alter soil diazotrophic community and probably the ecosystem nitrogen input mechanisms, highlighting the enormous effects of climate change on alpine ecosystems
An epigenomic approach to therapy for tamoxifen-resistant breast cancer
Tamoxifen has been a frontline treatment for estrogen receptor alpha (ERα)-positive breast tumors in premenopausal women. However, resistance to tamoxifen occurs in many patients. ER still plays a critical role in the growth of breast cancer cells with acquired tamoxifen resistance, suggesting that ERα remains a valid target for treatment of tamoxifen-resistant (Tam-R) breast cancer. In an effort to identify novel regulators of ERα signaling, through a small-scale siRNA screen against histone methyl modifiers, we found WHSC1, a histone H3K36 methyltransferase, as a positive regulator of ERα signaling in breast cancer cells. We demonstrated that WHSC1 is recruited to the ERα gene by the BET protein BRD3/4, and facilitates ERα gene expression. The small-molecule BET protein inhibitor JQ1 potently suppressed the classic ERα signaling pathway and the growth of Tam-R breast cancer cells in culture. Using a Tam-R breast cancer xenograft mouse model, we demonstrated in vivo anti-breast cancer activity by JQ1 and a strong long-lasting effect of combination therapy with JQ1 and the ER degrader fulvestrant. Taken together, we provide evidence that the epigenomic proteins BRD3/4 and WHSC1 are essential regulators of estrogen receptor signaling and are novel therapeutic targets for treatment of Tam-R breast cancer
An Experimental Study on the Establishment of Pulmonary Hypertension Model in Rats induced by Monocrotaline
Pulmonary hypertension is called PH for short. It is caused by the pulmonary artery vascular disease leading to pulmonary vascular resistance, and the increase right lung compartment load, which resulting in weakening or even collapse of the right ventricular function. The establishment of rat PH model under the action of monocrotaline is a repeatable, simple and accessible operation technique, which has been widely used in the treatment of pulmonary hypertension. This paper discusses the principle and properties of the PH model on rats under the monocrotaline action
- …