27 research outputs found

    Perspectives on achievements and challenges of oxygen transport dual‐functional membrane reactors

    Get PDF
    The integration of membrane separation processes with chemical reactions through oxygen transport dual‐functional membrane reactors has attracted significant attention due to the potential for process intensification, which also can create a synergy between the two units. This approach holds promise for promoting green chemistry principles by reducing energy consumption and environmental pollution. Despite its potential, a comprehensive review of recent advancements exploring the full potential of oxygen transport dual‐functional membrane reactors (coupling two distinct reactions) in enhancing membrane performance is currently lacking. To address this gap, this perspective article presents various concepts and principles of oxygen transport dual‐functional membrane reactors and provides an overview of recent advances and applications. Additionally, the challenges and opportunities for future research to enhance the efficiency of the process toward industrialization are discussed and highlighted. These include developing novel oxygen transport membrane materials, optimizing membrane engineering, innovating membrane reactor design, and exploring new applications and reaction mechanisms

    Chemical composition and source apportionment of PM <sub>2.5</sub> in urban areas of Xiangtan, central south China

    Get PDF
    Xiangtan, South China, is characterized by year-round high relative humidity and very low wind speeds. To assess levels of PM2.5, daily samples were collected from 2016 to 2017 at two urban sites. The mass concentrations of PM2.5 were in the range of 30&#8315;217 &#181;g/m3, with the highest concentrations in winter and the lowest in spring. Major water-soluble ions (WSIIs) and total carbon (TC) accounted for 58&#8315;59% and 21&#8315;24% of the PM2.5 mass, respectively. Secondary inorganic ions (SO42&#8722;, NO3&#8722;, and NH4+) dominated the WSIIs and accounted for 73% and 74% at the two sites. The concentrations of K, Fe, Al, Sb, Ca, Zn, Mg, Pb, Ba, As, and Mn in the PM2.5 at the two sites were higher than 40 ng/m3, and decreased in the order of winter &gt; autumn &gt; spring. Enrichment factor analysis indicates that Co, Cu, Zn, As, Se, Cd, Sb, Tl, and Pb mainly originates from anthropogenic sources. Source apportionment analysis showed that secondary inorganic aerosols, vehicle exhaust, coal combustion and secondary aerosols, fugitive dust, industrial emissions, steel industry are the major sources of PM2.5, contributing 25&#8315;27%, 21&#8315;22%, 19&#8315;21%, 16&#8315;18%, 6&#8315;9%, and 8&#8315;9% to PM2.5 mass

    Roadmap for Sustainable Mixed Ionic‐Electronic Conducting Membranes

    Get PDF
    Mixed ionic‐electronic conducting (MIEC) membranes have gained growing interest recently for various promising environmental and energy applications, such as H₂ and O₂ production, CO₂ reduction, O₂ and H₂ separation, CO₂ separation, membrane reactors for production of chemicals, cathode development for solid oxide fuel cells, solar‐driven evaporation and energy‐saving regeneration as well as electrolyzer cells for power‐to‐X technologies. The purpose of this roadmap, written by international specialists in their fields, is to present a snapshot of the state‐of‐the‐art, and provide opinions on the future challenges and opportunities in this complex multidisciplinary research field. As the fundamentals of using MIEC membranes for various applications become increasingly challenging tasks, particularly in view of the growing interdisciplinary nature of this field, a better understanding of the underlying physical and chemical processes is also crucial to enable the career advancement of the next generation of researchers. As an integrated and combined article, it is hoped that this roadmap, covering all these aspects, will be informative to support further progress in academics as well as in the industry‐oriented research toward commercialization of MIEC membranes for different applications

    Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1.

    Get PDF
    The influenza virus PB1-F2 is an 87-amino acid mitochondrial protein that previously has been shown to induce cell death, although the mechanism of apoptosis induction has remained unclear. In the process of characterizing its mechanism of action we found that the viral PB1-F2 protein sensitizes cells to apoptotic stimuli such as tumor necrosis factor alpha, as demonstrated by increased cleavage of caspase 3 substrates in PB1-F2-expressing cells. Moreover, treatment of purified mouse liver mitochondria with recombinant PB1-F2 protein resulted in cytochrome c release, loss of the mitochondrial membrane potential, and enhancement of tBid-induced mitochondrial permeabilization, suggesting a possible mechanism for the observed cellular sensitization to apoptosis. Using glutathione-S-transferase pulldowns with subsequent mass spectrometric analysis, we identified the mitochondrial interactors of the PB1-F2 protein and showed that the viral protein uniquely interacts with the inner mitochondrial membrane adenine nucleotide translocator 3 and the outer mitochondrial membrane voltage-dependent anion channel 1, both of which are implicated in the mitochondrial permeability transition during apoptosis. Consistent with this interaction, blockers of the permeability transition pore complex (PTPC) inhibited PB1-F2-induced mitochondrial permeabilization. Based on our findings, we propose a model whereby the proapoptotic PB1-F2 protein acts through the mitochondrial PTPC and may play a role in the down-regulation of the host immune response to infection

    Impacts and mechanisms of nanobubbles level in drip irrigation system on soil fertility, water use efficiency and crop production: The perspective of soil microbial community

    No full text
    Rhizosphere hypoxia severely inhibited plant growth, reducing the crop yield and water use efficiency (WUE) in greenhouse crops. Irrigation using nanobubbles (NBs) has been an efficient method to increase crop yield and WUE by ameliorating hypoxic conditions and promoting plant growth. However, the potential effects and mechanisms of different oxygen concentrations in water enriched in nanobubbles (NBW) remain unclear. Herein, this study examined the influence of different total oxygen concentrations (TOCs, ranged between 160 and 280 mg L) on tomato agronomic performance, soil fertility, and the bacterial community after a two-season of NBW irrigation. The results indicated that the tomato yield, WUE, soluble sugar, and vitamin C were significantly improved by NBs, showing the trends of rising to decrease with the corresponding oxygen concentration in irrigation water. The total C (TC), organic matter (OM), available N (AN) and K (AK) in soil tended to increase and then decrease with TOC in irrigation water. NB obtained the highest soil OM and AN values, and NB obtained the highest TC and AK values. The soil bacterial community composition gradually differentiated with increasing oxygen concentration. There were significant differences in relative abundances of Proteobacteria and Nitrospirae across the six oxygen levels. The keystones in the co-occurrence network were dependent on oxygen levels. FAPROTAX results revealed that bacterial functions of methanol oxidation, N fixation, aerobic chemoheterotrophy, and cellulolysis were more abundant in NB treated soils, consequently resulting in better crop yield, WUE, and soil fertility. Overall, the increased abundance of taxa participating in soil nutrient turnover contributed to improved soil fertility and crop agronomic performance. Our findings provided a significant opportunity to advance the understanding of oxygen threshold during aerated irrigation, with implications for green and efficient agricultural production.The research is funded by the National Natural Science Foundation of China (51979274), the Science and Technology Innovation Project of Beijing Vocational College of Agriculture (XY-YF-20-14), and China Postdoctoral Science Foundation (2020M680764). F. Bastida is grateful to the project AGL 2017–85755-RMINECO/AEI/FEDER, the CSIC project I-LINK + 2018 (LINKA20069), and funds from “Fundación Séneca” from Murcia Province (19896/GERM/15

    Perspectives on achievements and challenges of oxygen transport dual‐functional membrane reactors

    No full text
    The integration of membrane separation processes with chemical reactions through oxygen transport dual-functional membrane reactors has attracted significant attention due to the potential for process intensification, which also can create a synergy between the two units. This approach holds promise for promoting green chemistry principles by reducing energy consumption and environmental pollution. Despite its potential, a comprehensive review of recent advancements exploring the full potential of oxygen transport dual-functional membrane reactors (coupling two distinct reactions) in enhancing membrane performance is currently lacking. To address this gap, this perspective article presents various concepts and principles of oxygen transport dual-functional membrane reactors and provides an overview of recent advances and applications. Additionally, the challenges and opportunities for future research to enhance the efficiency of the process toward industrialization are discussed and highlighted. These include developing novel oxygen transport membrane materials, optimizing membrane engineering, innovating membrane reactor design, and exploring new applications and reaction mechanisms

    PB1-F2 Protein-Mediated Enhancement of TNFα-Induced Apoptosis Is Inhibited by Bcl-xL

    No full text
    <p>A549 cells containing a stably-integrated neomycin resistance gene (A549-neo) (A), or A549 cells stably overexpressing Bcl-xL (A549-Bcl-xL) (B) were transfected with either empty vector or vector encoding HA-tagged PB1-F2. At 24 h post-transfection, cells were treated with 50 ng/ml TNFα, where indicated. Then 6 h post-treatment, the cells were fixed and stained with M30 antibody to cleaved cytokeratin and with anti-HA antibody.</p

    Identification of PB1-F2 Protein Domains Responsible for Interaction with ANT3 and VDAC1

    No full text
    <div><p>(A) PB1-F2 N- and C-terminal domains were cloned separately as N-terminal HA- and C-terminal GFP fusion proteins as follows. (1) GFP control; (2) full-length fusion protein (HA-PB1-F2-GFP); (3) C-terminal 38–87-amino acid domain fusion protein (HA-cF2-GFP); (4) N-terminal 1–37 amino acid domain fusion protein (HA-nF2-GFP); (5) N-terminal domain fusion protein with cytochrome oxidase mitochondrial targeting sequence (HA-MTS-nF2-GFP); and (6) control MTS-GFP fusion protein (HA-MTS-GFP).</p><p>(B) Localization of fusion proteins was determined in transfected HeLa cells (green, GFP-fusion protein; red, Mitotracker dye staining for mitochondria; blue, DAPI nuclear stain).</p><p>(C and D) Interaction of fusion proteins with ANT3 and VDAC1 was determined by cotransfecting 293T cells with each fusion construct and a vector encoding Flag-tagged ANT3 or VDAC1, respectively. Immunoprecipitation was performed with an anti-HA antibody, with subsequent immunoblotting for Flag-tagged ANT3 or VDAC1.</p></div
    corecore