185 research outputs found

    Interannual Variations and Trends in Global Land Surface Phenology Derived from Enhanced Vegetation Index During 1982-2010

    Get PDF
    Land swiace phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstmted to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This srudy detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examIned across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and OSL varied considerably during 1982-2010 across the globe. Generally, the interarmual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative OSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3 decades. OGI mainly showed late trends in the Southern Hemisphere of Africa while GSL was reversed from reduced GSL trends (1982-1999) to prolonged trends (2000-2010). In Australia, GSL exhibited considerable interannual variation, but the consistent trend lacked presence in most regions. Finally, the proportion of pixels with significant trends was less than I% in most of climate regions although it could be as large as 10%

    Stabilizing Q Learning Via Soft Mellowmax Operator

    Full text link
    Learning complicated value functions in high dimensional state space by function approximation is a challenging task, partially due to that the max-operator used in temporal difference updates can theoretically cause instability for most linear or non-linear approximation schemes. Mellowmax is a recently proposed differentiable and non-expansion softmax operator that allows a convergent behavior in learning and planning. Unfortunately, the performance bound for the fixed point it converges to remains unclear, and in practice, its parameter is sensitive to various domains and has to be tuned case by case. Finally, the Mellowmax operator may suffer from oversmoothing as it ignores the probability being taken for each action when aggregating them. In this paper, we address all the above issues with an enhanced Mellowmax operator, named SM2 (Soft Mellowmax). Particularly, the proposed operator is reliable, easy to implement, and has provable performance guarantee, while preserving all the advantages of Mellowmax. Furthermore, we show that our SM2 operator can be applied to the challenging multi-agent reinforcement learning scenarios, leading to stable value function approximation and state of the art performance.Comment: 14 page

    Pornographic Image Recognition via Weighted Multiple Instance Learning

    Full text link
    In the era of Internet, recognizing pornographic images is of great significance for protecting children's physical and mental health. However, this task is very challenging as the key pornographic contents (e.g., breast and private part) in an image often lie in local regions of small size. In this paper, we model each image as a bag of regions, and follow a multiple instance learning (MIL) approach to train a generic region-based recognition model. Specifically, we take into account the region's degree of pornography, and make three main contributions. First, we show that based on very few annotations of the key pornographic contents in a training image, we can generate a bag of properly sized regions, among which the potential positive regions usually contain useful contexts that can aid recognition. Second, we present a simple quantitative measure of a region's degree of pornography, which can be used to weigh the importance of different regions in a positive image. Third, we formulate the recognition task as a weighted MIL problem under the convolutional neural network framework, with a bag probability function introduced to combine the importance of different regions. Experiments on our newly collected large scale dataset demonstrate the effectiveness of the proposed method, achieving an accuracy with 97.52% true positive rate at 1% false positive rate, tested on 100K pornographic images and 100K normal images.Comment: 9 pages, 3 figure
    corecore